Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Basics, benefits, and pitfalls of pupillometers assessing visual function

Abstract

Numerous commercially and non-commercially available pupillometers are nowadays able to assess various biological functions in humans, by evaluating pupils’ dynamics in response to specific stimuli. However, the use of pupillometers for ophthalmic afferent evaluations (i.e., photoreceptoral responses) in real-world settings is relatively limited. Recent scientific and technological advances, coupled with artificial intelligence methods have improved the performance of such devices to objectively detect, quantify, and classify functional disturbances of the retina and the optic nerve. This review aims to summarize the scientific principles, indications, outcomes, and current limitations of pupillometry used for evaluation of afferent pathways in ophthalmic clinical settings.

摘要

如今, 大量用于商业和非商业的瞳孔测量仪能够通过评估瞳孔对特定刺激的动力学反应来评估各种生物学功能。然而, 真实世界中瞳孔测量仪在视觉传入系统 (即光感受器反应) 方面的应用相对有限。当前科技进步和人工智能可提高这些设备的性能, 能够客观地检测、量化和分类视网膜和视神经的功能障碍。本综述旨在总结瞳孔测量仪在眼科临床应用中用于评估视觉传入系统的科学原理、适应症、结果和局限性。

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generic graph representing the pupillary light response (PLR) and associated parameters allowing its quantification (i.e., maximum pupillary constriction, latency, post-illumination pupillary response at 6 s after light cessation), in a normal eye (black) and in glaucoma (blue).

Similar content being viewed by others

References

  1. Lowenstein O, Loewenfeld IE. Electronic pupillography; a new instrument and some clinical applications. AMA Arch Ophthalmol. 1958;59:352–63.

    Article  CAS  PubMed  Google Scholar 

  2. Pinheiro HM, Da Costa RM. Pupillary light reflex as a diagnostic aid from computational viewpoint: a systematic literature review. J Biomed Inform. 2021;117:103757.

    Article  PubMed  Google Scholar 

  3. Packiasabapathy S, Rangasamy V, Sadhasivam S. Pupillometry in perioperative medicine: a narrative review. Can J Anesth/J Can Anesth. 2021;68:566–78.

    Article  Google Scholar 

  4. Opic P, Rüegg S, Marsch S, Gut SS, Sutter R. Automated quantitative pupillometry in the critically Ill: a systematic review of the literature. Neurology. 2021;97:e629–42.

    Article  PubMed  Google Scholar 

  5. Hsu CH, Kuo LT. Application of pupillometry in neurocritical patients. JPM. 2023;13:1100.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Romagnosi F, Bernini A, Bongiovanni F, Iaquaniello C, Miroz JP, Citerio G, et al. Neurological pupil index for the early prediction of outcome in severe acute brain injury patients. Brain Sci. 2022;12:609.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chougule PS, Najjar RP, Finkelstein MT, Kandiah N, Milea D. Light-induced pupillary responses in Alzheimer’s disease. Front Neurol. 2019;10:360.

    Article  PubMed  PubMed Central  Google Scholar 

  8. La Morgia C, Ross‐Cisneros FN, Koronyo Y, Hannibal J, Gallassi R, Cantalupo G, et al. Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann Neurol. 2016;79:90–109.

    Article  PubMed  Google Scholar 

  9. Kahya M, Lyons KE, Pahwa R, Akinwuntan AE, He J, Devos H. Pupillary response to postural demand in parkinson’s disease. Front Bioeng Biotechnol. 2021;9:617028.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Satou T, Ishikawa H, Asakawa K, Goseki T, Niida T, Shimizu K. Evaluation of relative afferent pupillary defect using RAPDx device in patients with optic nerve disease. Neuro-Ophthalmol. 2016;40:120–4.

    Article  Google Scholar 

  11. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20:600–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kawasaki A, Kardon RH. Intrinsically photosensitive retinal ganglion cells. J Neuroophthalmol. 2007;27:195–204.

    Article  PubMed  Google Scholar 

  13. Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci. 2002;22:RC191.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aranda ML, Schmidt TM. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell Mol Life Sci. 2021;78:889–907.

    Article  CAS  PubMed  Google Scholar 

  15. Kardon R, Anderson SC, Damarjian TG, Grace EM, Stone E, Kawasaki A. Chromatic pupil responses preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex. Ophthalmology. 2009;116:1564–73.

    Article  PubMed  Google Scholar 

  16. Lucas RJ, Allen AE, Milosavljevic N, Storchi R, Woelders T. Can we see with melanopsin? Annu Rev Vis Sci. 2020;6:453–68.

    Article  PubMed  Google Scholar 

  17. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295:1065–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB. Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci. 2001;4:1165.

    Article  CAS  PubMed  Google Scholar 

  19. Mure LS. Intrinsically photosensitive retinal ganglion cells of the human retina. Front Neurol. 2021;12:636330.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Asakawa K. Time-course of adaptations for electroretinography and pupillography. MRAJ [Internet]. (2021) [cited 2023 Dec 24];9. Available from: https://doi.org/10.18103/mra.v9i4.2385

  21. Nugent TW, Carter DD, Uprety S, Adhikari P, Feigl B, Zele AJ. Protocol for isolation of melanopsin and rhodopsin in the human eye using silent substitution. STAR Protoc. 2023;4:102126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herbst K, Sander B, Milea D, Lund-Andersen H, Kawasaki A. Test–retest repeatability of the pupil light response to blue and red light stimuli in normal human eyes using a novel pupillometer. Front Neur [Internet]. (2011) [cited 2023 Dec 24];2. Available from: http://journal.frontiersin.org/article/10.3389/fneur.2011.00010/abstract

  23. Bremner FD. Pupil assessment in optic nerve disorders. Eye. 2004;18:1175–81.

    Article  CAS  PubMed  Google Scholar 

  24. Rukmini AV, Milea D, Gooley JJ. Chromatic pupillometry methods for assessing photoreceptor health in retinal and optic nerve diseases. Front Neurol. 2019;10:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bindiganavale MP, Moss HE. Development and implementation of a handheld pupillometer for detection of optic neuropathies. Curr Eye Res. 2021;46:1432–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blazek P, Davis SL, Greenberg BM, Conger A, Conger D, Vernino S, et al. Objective characterization of the relative afferent pupillary defect in MS. J Neurol Sci. 2012;323:193–200.

    Article  PubMed  Google Scholar 

  27. Najjar RP, Rukmini AV, Finkelstein MT, Nusinovici S, Mani B, Nongpiur ME, et al. Handheld chromatic pupillometry can accurately and rapidly reveal functional loss in glaucoma. Br J Ophthalmol. 2023;107:663–70.

    Article  PubMed  Google Scholar 

  28. Nyholm B, Obling L, Hassager C, Grand J, Møller J, Othman M, et al. Superior reproducibility and repeatability in automated quantitative pupillometry compared to standard manual assessment, and quantitative pupillary response parameters present high reliability in critically ill cardiac patients. Schäfer A, editor. PLoS ONE. 2022;17:e0272303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sabeti F, James AC, Carle CF, Essex RW, Bell A, Maddess T. Comparing multifocal pupillographic objective perimetry (mfPOP) and multifocal visual evoked potentials (mfVEP) in retinal diseases. Sci Rep. 2017;7:45847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kelbsch C, Lange J, Wilhelm H, Wilhelm B, Peters T, Kempf M, et al. Chromatic pupil campimetry reveals functional defects in exudative age-related macular degeneration with differences related to disease activity. Trans Vis Sci Tech. 2020;9:5.

    Article  Google Scholar 

  31. Sabeti F, James AC, Essex RW, Maddess T. Multifocal pupillography identifies retinal dysfunction in early age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2013;251:1707–16.

    Article  PubMed  Google Scholar 

  32. Sher I, Tucker Y, Gurevich M, Hamburg A, Bubis E, Kfir J, et al. Chromatic pupilloperimetry measures correlate with visual acuity and visual field defects in retinitis pigmentosa patients. Trans Vis Sci Tech. 2020;9:10.

    Article  Google Scholar 

  33. Yoo YJ, Hwang JM, Yang HK. Differences in pupillary light reflex between optic neuritis and ischemic optic neuropathy. Bhattacharya S, editor. PLoS One. 2017;12:e0186741.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Satou T, Goseki T, Asakawa K, Ishikawa H, Shimizu K. Effects of age and sex on values obtained by RAPDx ® pupillometer, and determined the standard values for detecting relative afferent pupillary defect. Trans Vis Sci Tech. 2016;5:18.

    Article  Google Scholar 

  35. Sabeti F, Maddess T, Essex RW, Saikal A, James AC, Carle CF. Multifocal pupillography in early age-related macular degeneration. Optom Vis Sci. 2014;91:904–15.

    Article  PubMed  Google Scholar 

  36. Maynard ML, Zele AJ, Feigl B. Melanopsin-mediated post-illumination pupil response in early age-related macular degeneration. Invest Ophthalmol Vis Sci. 2015;56:6906.

    Article  CAS  PubMed  Google Scholar 

  37. Kelbsch C, Strasser T, Chen Y, Feigl B, Gamlin PD, Kardon R, et al. Standards in pupillography. Front Neurol. 2019;10:129.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Park JC, Moura AL, Raza AS, Rhee DW, Kardon RH, Hood DC. Toward a clinical protocol for assessing rod, cone, and melanopsin contributions to the human pupil response. Invest Ophthalmol Vis Sci. 2011;52:6624.

    Article  PubMed  PubMed Central  Google Scholar 

  39. PuRe: Robust pupil detection for real-time pervasive eye tracking—ScienceDirect [Internet]. [cited 2023 Dec 24]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1077314218300146.

  40. Suo L, Zhang D, Qin X, Li A, Zhang C, Wang Y. Evaluating state-of-the-art computerized pupillary assessments for glaucoma detection: a systematic review and meta-analysis. Front Neurol. 2020;11:777.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Quan Y, Duan H, Zhan Z, Shen Y, Lin R, Liu T, et al. Evaluation of the glaucomatous macular damage by chromatic pupillometry. Ophthalmol Ther. 2023;12:2133–56.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sabeti F, Maddess T, Essex RW, James AC. Multifocal pupillographic assessment of age-related macular degeneration. Optom Vis Sci. 2011;88:1477–85.

    Article  PubMed  Google Scholar 

  43. Chopra R, Mulholland PJ, Petzold A, Ogunbowale L, Gazzard G, Bremner FD, et al. Automated pupillometry using a prototype binocular optical coherence tomography system. Am J Ophthalmol. 2020;214:21–31.

    Article  PubMed  Google Scholar 

  44. Solyman O, Abushanab MMI, Carey AR, Henderson AD. Pilot study of smartphone infrared pupillography and pupillometry. Clin Opthalmol. 2022;16:303–10.

    Article  Google Scholar 

  45. Gale J, Eldridge E, Pathmanathan S, Polutea K, Gouws G, Fraser S. Development of an open-source pupilometer for testing melanopsin responses. Investig Ophthalmol Vis Sci. 2017;58:5090.

    Google Scholar 

  46. Mazziotti R, Carrara F, Viglione A, Lupori L, Lo Verde L, Benedetto A, et al. MEYE: web app for translational and real-time pupillometry. eNeuro. 2021;8:ENEURO.0122-21.2021.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zandi B, Lode M, Herzog A, Sakas G, Khanh TQ. PupilEXT: flexible open-source platform for high-resolution pupillometry in vision research. Front Neurosci. 2021;15:676220.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Martin JT, Pinto J, Bulte D, Spitschan M. PyPlr: a versatile, integrated system of hardware and software for researching the human pupillary light reflex. Behav Res. 2021;54:2720–39.

    Article  Google Scholar 

  49. Quan Y, Duan H, Zhan Z, Shen Y, Lin R, Liu T, et al. Binocular head-mounted chromatic pupillometry can detect structural and functional loss in glaucoma. Front Neurosci. 2023;17:1187619.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chang DS, Arora K, Boland MV, Friedman DS. The relationship between quantitative pupillometry and estimated ganglion cell counts in patients with glaucoma. J Glaucoma. 2019;28:238–42.

    Article  PubMed  Google Scholar 

  51. Yoshikawa T, Obayashi K, Miyata K, Saeki K, Ogata N. Association between postillumination pupil response and glaucoma severity: a cross-sectional analysis of the LIGHT study. Invest Ophthalmol Vis Sci. 2022;63:24.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rukmini AV, Milea D, Baskaran M, How AC, Perera SA, Aung T, et al. Pupillary responses to high-irradiance blue light correlate with glaucoma severity. Ophthalmology. 2015;122:1777–85.

    Article  PubMed  Google Scholar 

  53. Feigl B, Mattes D, Thomas R, Zele AJ. Intrinsically photosensitive (Melanopsin) retinal ganglion cell function in glaucoma. Investig Ophthalmol Vis Sci. 2011;52:4362.

    Article  CAS  Google Scholar 

  54. Adhikari P, Zele AJ, Thomas R, Feigl B. Quadrant field pupillometry detects melanopsin dysfunction in glaucoma suspects and early glaucoma. Sci Rep. 2016;6:33373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nissen C, Sander B, Milea D, Kolko M, Herbst K, Hamard P, et al. Monochromatic Pupillometry in unilateral glaucoma discloses no adaptive changes subserved by the ipRGCs. Front Neurol [Internet]. 2014 [cited 2023 Dec 24];5. Available from: http://journal.frontiersin.org/article/10.3389/fneur.2014.00015/abstract

  56. Kankipati L, Girkin CA, Gamlin PD. The post-illumination pupil response is reduced in glaucoma patients. Investig Ophthalmol Vis Sci. 2011;52:2287. Apr 8

    Article  Google Scholar 

  57. Pupillary responses driven by ipRGCs and classical photoreceptors are impaired in glaucoma | Graefe’s Archive for Clinical and Experimental Ophthalmology [Internet]. [cited 2023 Dec 24]. Available from: https://link.springer.com/article/10.1007/s00417-016-3351-9

  58. Pupillary response to sparse multifocal stimuli in multiple sclerosis patients - EN Ali, T Maddess, AC James, C Voicu, CJ Lueck, 2014 [Internet]. [cited 2023 Dec 24]. Available from: https://journals.sagepub.com/doi/10.1177/1352458513512708

  59. De Rodez Benavent SA, Nygaard GO, Harbo HF, Tønnesen S, Sowa P, Landrø NI, et al. Fatigue and cognition: pupillary responses to problem‐solving in early multiple sclerosis patients. Brain Behav. 2017;7:e00717.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Guillemin C, Hammad G, Read J, Requier F, Charonitis M, Delrue G, et al. Pupil response speed as a marker of cognitive fatigue in early Multiple Sclerosis. Mult Scler Relat Disord. 2022;65:104001.

    Article  PubMed  Google Scholar 

  61. de Seze J, Arndt C, Stojkovic T, Ayachi M, Gauvrit JY, Bughin M, et al. Pupillary disturbances in multiple sclerosis: correlation with MRI findings. J Neurol Sci. 2001;188:37–41.

    Article  PubMed  Google Scholar 

  62. Bitirgen G, Akpinar Z, Turk HB, Malik RA. Abnormal dynamic pupillometry relates to neurologic disability and retinal axonal loss in patients with multiple sclerosis. Trans Vis Sci Tech. 2021;10:30.

    Article  Google Scholar 

  63. Finkelstein MT, Najjar RP, Chougule P, Mathur R, Milea D. Chromatic pupillometry in multiple evanescent white dot syndrome masquerading as atypical optic neuritis. Acta Ophthalmol. 2022;100:713–5.

    Article  PubMed  Google Scholar 

  64. Yu-Wai-Man P, Newman NJ. Inherited eye-related disorders due to mitochondrial dysfunction. Hum Mol Genet. 2017;26:R12–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bremner FD, Shallo J, Riordan P, Smith SE. Comparing pupil function with visual function in patients with leber’s hereditary optic neuropathy. Investig Ophthalmol Vis Sci. 1999;40:2528–34.

    CAS  Google Scholar 

  66. Wakakura M, Yokoe J. Evidence for preserved direct pupillary light response in Leber’s hereditary optic neuropathy. Br J Ophthalmol. 1995;79:442–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bremner FD, Tomlin EA, Shallo J, Votruba M, Smith SE. The pupil in dominant optic atrophy. Invest Ophthalmol Vis Sci. 2001;42:675–8.

    CAS  PubMed  Google Scholar 

  68. Pupil responses derived from outer and inner retinal photoreception are normal in patients with hereditary optic neuropathy - ScienceDirect [Internet]. [cited 2023 Dec 24]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0014483513003321

  69. La Morgia C, Ross-Cisneros FN, Sadun AA, Hannibal J, Munarini A, Mantovani V, et al. Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies. Brain. 2010;133:2426–38.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Münch M, Léon L, Collomb S, Kawasaki A. Comparison of acute non-visual bright light responses in patients with optic nerve disease, glaucoma and healthy controls. Sci Rep. 2015;5:15185.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Nissen C, Rönnbäck C, Sander B, Herbst K, Milea D, Larsen M, et al. Dissociation of pupillary post-illumination responses from visual function in confirmed OPA1 c.983A>G and c.2708_2711delTTAG autosomal dominant optic atrophy. Front Neurol 2015;6::5 http://journal.frontiersin.org/Article/10.3389/fneur.2015.00005/abstract

    Article  PubMed  Google Scholar 

  72. Loo JL, Singhal S, Rukmini AV, Tow S, Amati-Bonneau P, Procaccio V, et al. Multiethnic involvement in autosomal-dominant optic atrophy in Singapore. Eye. 2017;31:475–80.

    Article  CAS  PubMed  Google Scholar 

  73. Moura ALA, Nagy BV, La Morgia C, Barboni P, Oliveira AGF, Salomão SR, et al. The Pupil Light Reflex in Leber’s Hereditary Optic Neuropathy: Evidence for Preservation of Melanopsin-Expressing Retinal Ganglion Cells. Invest Ophthalmol Vis Sci. 2013;54:4471.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tsika C, Crippa SV, Kawasaki A. Differential monocular vs. binocular pupil responses from melanopsin-based photoreception in patients with anterior ischemic optic neuropathy. Sci Rep. 2015;5:10780.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Richter P, Wilhelm H, Peters T, Luedtke H, Kurtenbach A, Jaegle H, et al. The diagnostic accuracy of chromatic pupillary light responses in diseases of the outer and inner retina. Graefes Arch Clin Exp Ophthalmol. 2017;255:519–27.

    Article  CAS  PubMed  Google Scholar 

  76. Herbst K, Sander B, Lund-Andersen H, Wegener M, Hannibal J, Milea D. Unilateral anterior ischemic optic neuropathy: chromatic pupillometry in affected, fellow non-affected and healthy control eyes. Front Neurol [Internet]. (2013) [cited 2023 Dec 24];4. Available from: http://journal.frontiersin.org/article/10.3389/fneur.2013.00052/abstract

  77. Park JC, Moss HE, McAnany JJ. The pupillary light reflex in idiopathic intracranial hypertension. Invest Ophthalmol Vis Sci. 2016;57:23–9.

  78. Ba-Ali S, Jensen RH, Larsen LS, Lund-Andersen H, Hamann S. The melanopsin-mediated pupillary light response is not changed in patients with newly diagnosed idiopathic intracranial hypertension. Neuro-Ophthalmol. 2018;42:65–72.

    Article  Google Scholar 

  79. Brozou C, Fotiou D, Androudi S, Theodoridou E, Giantselidis C, Alexandridis A, et al. Pupillometric characteristics in patients with choroidal neovascularization due to age-related macular degeneration. Eur J Ophthalmol. 2009;19:254–62.

    Article  PubMed  Google Scholar 

  80. Decleva D, Vidal KS, Kreuz AC, De Menezes PAHL, Ventura DF. Alterations of color vision and pupillary light responses in age-related macular degeneration. Front Aging Neurosci. 2023;14:933453.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rajan R, Deb A, Lomte S, Privitera C, Kannan N, Ramasamy K, et al. Quantification of relative afferent pupillary defect by an automated pupillometer and its relationship with visual acuity and dimensions of macular lesions in age-related macular degeneration. Indian J Ophthalmol. 2021;69:2746.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Maynard ML, J. Zele A, S. Kwan A, Feigl B. Intrinsically photosensitive retinal ganglion cell function, sleep efficiency and depression in advanced age-related macular degeneration. Investig Ophthalmol Vis Sci. 2017;58:990.

    Article  Google Scholar 

  83. Kardon R, Anderson SC, Damarjian TG, Grace EM, Stone E, Kawasaki A. Chromatic pupillometry in patients with retinitis pigmentosa. Ophthalmology. 2011;118:376–81.

    Article  PubMed  Google Scholar 

  84. Kawasaki A, Crippa SV, Kardon R, Leon L, Hamel C. Characterization of pupil responses to blue and red light stimuli in autosomal dominant retinitis pigmentosa due to NR2E3 mutation. Investig Ophthalmol Vis Sci. 2012;53:5562.

    Article  CAS  Google Scholar 

  85. Zhang M, Ouyang W, Wang H, Meng X, Li S, Yin ZQ. Quantitative assessment of visual pathway function in blind retinitis pigmentosa patients. Clin Neurophysiol. 2021;132:392–403.

    Article  PubMed  Google Scholar 

  86. Kelbsch C, Maeda F, Lisowska J, Lisowski L, Strasser T, Stingl K, et al. Analysis of retinal function using chromatic pupillography in retinitis pigmentosa and the relationship to electrically evoked phosphene thresholds. Acta Ophthalmologica [Internet]. (2017) Jun [cited 2023 Dec 24];95. Available from: https://onlinelibrary.wiley.com/doi/10.1111/aos.13259

  87. Stingl KT, Kuehlewein L, Weisschuh N, Biskup S, Cremers FPM, Khan MI, et al. Chromatic full-field stimulus threshold and pupillography as functional markers for late-stage, early-onset retinitis pigmentosa caused by CRB1 mutations. Trans Vis Sci Tech. 2019;8:45.

    Article  Google Scholar 

  88. Zhao H, Wang H, Zhang M, Weng C, Liu Y, Yin Z. Chromatic pupillometry isolation and evaluation of intrinsically photosensitive retinal ganglion cell-driven pupillary light response in patients with retinitis pigmentosa. Front Hum Neurosci. 2023;17:1212398.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wewetzer L, Held LA, Goetz K, Steinhäuser J. Determinants of the implementation of artificial intelligence-based screening for diabetic retinopathy—a cross-sectional study with general practitioners in Germany. Digit Health. 2023;9:205520762311766.

    Article  Google Scholar 

  90. Weerasinghe LS, Dunn HP, Fung AT, Maberly G, Cheung NW, Weerasinghe DP, et al. Diabetic Retinopathy Screening at the Point of Care (DR SPOC): detecting undiagnosed and vision-threatening retinopathy by integrating portable technologies within existing services. BMJ Open Diab Res Care. 2023;11:e003376.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ortube MC, Kiderman A, Eydelman Y, Yu F, Aguilar N, Nusinowitz S, et al. Comparative regional pupillography as a noninvasive biosensor screening method for diabetic retinopathy. Invest Ophthalmol Vis Sci. 2013;54:9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bista Karki S, Coppell KJ, Mitchell LV, Ogbuehi KC. Dynamic pupillometry in type 2 diabetes: pupillary autonomic dysfunction and the severity of diabetic retinopathy. OPTH. 2020;ume 14:3923–30.

    Article  Google Scholar 

  93. Jain M, Devan S, Jaisankar D, Swaminathan G, Pardhan S, Raman R. Pupillary abnormalities with varying severity of diabetic retinopathy. Sci Rep. 2018;8:5636.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kızıltoprak H, Tekin K, Sekeroglu MA, Yetkin E, Doguizi S, Yilmazbas P. Static and dynamic pupillary responses in patients with different stages of diabetic retinopathy. Neuro Ophthalmol. 2020;44:226–35.

    Article  Google Scholar 

  95. Lerner AG, Bernabé‐Ortiz A, Ticse R, Hernandez A, Huaylinos Y, Pinto ME, et al. Type 2 diabetes and cardiac autonomic neuropathy screening using dynamic pupillometry. Diabet Med. 2015;32:1470–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Feigl B, Zele AJ, Fader SM, Howes AN, Hughes CE, Jones KA, et al. The post‐illumination pupil response of melanopsin‐expressing intrinsically photosensitive retinal ganglion cells in diabetes. Acta Ophthalmologica [Internet]. (2012) May [cited 2023 Dec 24];90. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1755-3768.2011.02226.x

  97. Ba‐Ali S, Brøndsted AE, Andersen HU, Jennum P, Lund‐Andersen H. Pupillary light responses in type 1 and type 2 diabetics with and without retinopathy. Acta Ophthalmol. 2020;98:477–84.

    Article  PubMed  Google Scholar 

  98. Tan T, Finkelstein MT, Tan GSW, Tan ACS, Chan CM, Mathur R, et al. Retinal neural dysfunction in diabetes revealed with handheld chromatic pupillometry. Clin Exp Ophthalmol. 2022;50:745–56.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Park JC, Chen YF, Blair NP, Chau FY, Lim JI, Leiderman YI, et al. Pupillary responses in non-proliferative diabetic retinopathy. Sci Rep. 2017;7:44987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ayse Gungor for her contribution to the figure drawing.

Author information

Authors and Affiliations

Authors

Contributions

MP has contributed with data collection, selection, and article writing. DM has contributed with the conception, writing, and article editing.

Corresponding author

Correspondence to Dan Milea.

Ethics declarations

Competing interests

DM is co-inventor of a patented device (handheld ophthalmic and neurological screening device).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philibert, M., Milea, D. Basics, benefits, and pitfalls of pupillometers assessing visual function. Eye (2024). https://doi.org/10.1038/s41433-024-03151-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41433-024-03151-9

This article is cited by

Search

Quick links