Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging the brain: diagnosis aided by structural features on neuroimaging studies

Abstract

The use of neuroimaging allows the ophthalmologist to identify structural lesions in the orbit or along the neuroaxis that allow for more accurate diagnosis and treatment of patients with neuro-ophthalmic diseases. The primary imaging tools include computed tomography (CT) and magnetic resonance imaging (MRI), both of which can be used to evaluate the brain, spinal cord and canal, and orbits. Neurovascular structures, both arterial and venous, also can be imaged in high resolution with modern CT and MR angiography and CT and MR venography. In many cases, invasive procedures such as catheter angiography can be avoided with these studies, and angiography is often reserved for confirmation of vascular lesions combined with endovascular treatment. In this article, we illustrate how the evaluation of patients presenting with neuro-ophthalmic diseases involving the afferent and efferent visual pathways can be optimized with the use of appropriate diagnostic imaging studies. The complementary value of ophthalmic imaging is also demonstrated, and the advantages and disadvantages of both CT and MRI as well as their use in longitudinal patient follow up is demonstrated.

摘要

神经成像的应用使眼科医生能够识别眼眶或神经轴上的结构性病变, 从而对神经眼科疾病患者进行更准确地诊断和治疗。主要成像工具包括计算机断层扫描(CT)和磁共振成像(MRI), 这两种影像都可以用来评估大脑、脊髓、椎管和眼眶。神经血管结构, 动脉和静脉的神经血管结构也可用CT和MR血管成像以及CT和MR静脉成像进行高分辨成像。在许多情况下, 研究可避免诸如导管血管造影术等侵入性的操作, 且血管造影术通常用于结合血管的治疗来确认血管病变。本文阐述了如何通过使用适当的影像诊断研究优化对涉及传入和传出视觉通路的神经眼科疾病患者的评估。并阐述了眼科影像的互补价值, 以及CT和MRI的优缺点及其在患者纵向随访中的应用。

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MRI brain for evaluation of possible white matter lesions.
Fig. 2: Changes in visual fields (upper panel) and best corrected visual acuity (lower panel) observed during the follow-up period.
Fig. 3: Optic nerve oedema and visual status at presentation.
Fig. 4: MRI evaluation after identification of optic disc swelling.
Fig. 5: Axial MRI brain with contrast.
Fig. 6: Cerebral angiography and aneurysm treatment.
Fig. 7: Ophthalmic imaging after aneurysm treatment.
Fig. 8: MRI orbits, T1-weighted sequences with fat suppression and gadolinium contrast.
Fig. 9: Repeat MRI after a period of clinical observation.

Similar content being viewed by others

References

  1. Calcagni A, Neveu M, Jurkute N, Robson AG. Electrodiagnostic tests of the visual pathway and applications in neuro-ophthalmology. Eye. 2024, in press.

  2. Shin HJ, Costello F. Imaging the Optic Nerve with Optical Coherence Tomography. Eye. 2024, in press.

  3. Gibney B, Redmond CE, Byrne D, Mathur S, Murray N. A Review of the Applications of Dual-Energy CT in Acute Neuroimaging. Can Assoc Radio J. 2020;71:253–65.

    Article  Google Scholar 

  4. Yousaf T, Dervenoulas G, Politis M. Advances in MRI Methodology. Int Rev Neurobiol. 2018;141:31–76.

    Article  CAS  PubMed  Google Scholar 

  5. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–73.

    Article  PubMed  Google Scholar 

  6. Carnero Contentti E, Rojas JI, Criniti J, Lopez PA, Daccach Marques V, Soto de Castillo I, et al. Towards imaging criteria that best differentiate MS from NMOSD and MOGAD: Large multi-ethnic population and different clinical scenarios. Mult Scler Relat Disord. 2022;61:103778.

    Article  PubMed  Google Scholar 

  7. Ramanathan S, Prelog K, Barnes EH, Tantsis EM, Reddel SW, Henderson AP, et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler J. 2015;22:470–82.

    Article  Google Scholar 

  8. Contentti EC, Delgado-García G, López PA, Criniti J, Pettinicchi JP, Correa-Díaz EP, et al. Acute optic nerve lesions in first-ever NMOSD-related optic neuritis using conventional brain MRI: A Latin American multicenter study. Mult Scler Relat Disord. 2020;46:102558.

    Article  Google Scholar 

  9. Akaishi T, Sato DK, Nakashima I, Takeshita T, Takahashi T, Doi H, et al. MRI and retinal abnormalities in isolated optic neuritis with myelin oligodendrocyte glycoprotein and aquaporin-4 antibodies: a comparative study. J Neurol, Neurosurg Psychiatry. 2016;87:446.

    Article  PubMed  Google Scholar 

  10. Chen JJ, Flanagan EP, Jitprapaikulsan J, López-Chiriboga ASS, Fryer JP, Leavitt JA, et al. Myelin Oligodendrocyte Glycoprotein Antibody (MOG-IgG)-Positive Optic Neuritis: Clinical Characteristics, Radiologic Clues and Outcome. Am J Ophthalmol. 2018;195:8–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Filippi M, Preziosa P, Banwell BL, Barkhof F, Ciccarelli O, Stefano ND, et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain. 2019;142:1858–75.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Okuda DT, Moog TM, McCreary M, Bachand JN, Wilson A, Wright K, et al. Utility of shape evolution and displacement in the classification of chronic multiple sclerosis lesions. Sci Rep. 2020;10:19560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duan Y, Zhuo Z, Li H, Tian DC, Li Y, Yang L, et al. Brain structural alterations in MOG antibody diseases: a comparative study with AQP4 seropositive NMOSD and MS. J Neurol., Neurosurg Psychiatry. 2021;92:709–16.

    Article  PubMed  Google Scholar 

  14. Kim HJ, Paul F, Lana-Peixoto MA, Tenembaum S, Asgari N, Palace J, et al. MRI characteristics of neuromyelitis optica spectrum disorder. Neurology. 2015;84:1165–73.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cobo-Calvo A, Ruiz A, Maillart E, Audoin B, Zephir H, Bourre B, et al. Clinical spectrum and prognostic value of CNS MOG autoimmunity in adults. Neurology. 2018;90:e1858–69.

    Article  CAS  PubMed  Google Scholar 

  16. Bartels F, Lu A, Oertel FC, Finke C, Paul F, Chien C. Clinical and neuroimaging findings in MOGAD–MRI and OCT. Clin Exp Immunol. 2021;206:266–81.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jurynczyk M, Geraldes R, Probert F, Woodhall MR, Waters P, Tackley G, et al. Distinct brain imaging characteristics of autoantibody-mediated CNS conditions and multiple sclerosis. Brain. 2017;140:617–27.

    Article  PubMed  Google Scholar 

  18. Vosoughi AR, Margolin EA, Micieli JA. Idiopathic Intracranial Hypertension: Incidental Discovery Versus Symptomatic Presentation. J. Neuro-Ophthalmol. 2022;42:187–91.

    Article  Google Scholar 

  19. Chen BS, Newman NJ, Biousse V. Atypical presentations of idiopathic intracranial hypertension. Taiwan J Ophthalmol. 2020;11:25–38.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bidot S, Bruce BB, Saindane AM, Newman NJ, Biousse V. Asymmetric Papilledema in Idiopathic Intracranial Hypertension. J Neuro-Ophthalmol. 2015;35:31 http://journals.lww.com/jneuro-ophthalmology/Abstract/2015/03000/Asymmetric_Papilledema_in_Idiopathic_Intracranial.8.aspx

    Article  Google Scholar 

  21. Mollan SP, Chong YJ, Grech O, Sinclair AJ, Wakerley BR. Current Perspectives on Idiopathic Intracranial Hypertension without Papilloedema. Life. 2021;11:472.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Soroken C, Lacroix L, Korff CM. Combined VIth and VIIth nerve palsy: Consider idiopathic intracranial hypertension! Eur J Paediatr Neurol. 2016;20:336–8.

    Article  PubMed  Google Scholar 

  23. Thapa R, Mukherjee S. Transient Bilateral Oculomotor Palsy in Pseudotumor Cerebri. J Child Neurol. 2008;23:580–1.

    Article  PubMed  Google Scholar 

  24. Samara A, Ghazaleh D, Berry B, Ghannam M. Idiopathic intracranial hypertension presenting with isolated unilateral facial nerve palsy: a case report. J. Méd. Case Rep. 2019;13:94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bruce BB, Newman NJ, Biousse V. Ophthalmoparesis in Idiopathic Intracranial Hypertension. Am J Ophthalmol. 2006;142:878–80.

    Article  PubMed  Google Scholar 

  26. Arsava EM, Uluc K, Nurlu G, Kansu T. Electrophysiological evidence of trigeminal neuropathy in pseudotumor cerebri. J Neurol. 2002;249:1601–2.

    Article  PubMed  Google Scholar 

  27. Tan H. Bilateral Oculomotor Palsy Secondary to Pseudotumor Cerebri. Pediatr Neurol. 2010;42:141–2.

    Article  PubMed  Google Scholar 

  28. Aung AB, Chen BS, Wicks J, Bruce BB, Meyer BI, Dattilo M, et al. Presumptive Idiopathic Intracranial Hypertension Based on Neuroimaging Findings: A Referral Pattern Study. J Neuro-Ophthalmol. 2023;43:55–62.

    Article  Google Scholar 

  29. Yiangou A, Mollan SP, Sinclair AJ. Idiopathic intracranial hypertension: a step change in understanding the disease mechanisms. Nat Rev Neurol. 2023;19:769–85.

    Article  PubMed  Google Scholar 

  30. Vijay V, Mollan SP, Mitchell JL, Bilton E, Alimajstorovic Z, Markey KA, et al. Using Optical Coherence Tomography as a Surrogate of Measurements of Intracranial Pressure in Idiopathic Intracranial Hypertension. JAMA Ophthalmol. 2020;138:1264–71.

    Article  PubMed  Google Scholar 

  31. Costello F, Malmqvist L, Hamann S. The Role of Optical Coherence Tomography in Differentiating Optic Disc Drusen from Optic Disc Edema. Asia-Pac J Ophthalmol. 2019;7:271–9.

    Google Scholar 

  32. Malmqvist L, Bursztyn L, Costello F, Digre K, Fraser JA, Fraser C, et al. The Optic Disc Drusen Studies Consortium Recommendations for Diagnosis of Optic Disc Drusen Using Optical Coherence Tomography. J. Neuro-Ophthalmol. 2017;38:299.

    Article  Google Scholar 

  33. Tamhankar MA, Biousse V, Ying GS, Prasad S, Subramanian PS, Lee MS, et al. Isolated third, fourth, and sixth cranial nerve palsies from presumed microvascular versus other causes: a prospective study. Ophthalmology. 2013;120:2264–69.

    Article  PubMed  Google Scholar 

  34. Park KA, Oh SY, Min JH, Kim BJ, Kim Y. Cause of acquired onset of diplopia due to isolated third, fourth, and sixth cranial nerve palsies in patients aged 20 to 50 years in Korea: A high resolution magnetic resonance imaging study. J. Neurol. Sci. 2019;407:116546.

    Article  PubMed  Google Scholar 

  35. Park KA, Oh SY, Min JH, Kim BJ, Kim Y. Acquired onset of third, fourth, and sixth cranial nerve palsies in children and adolescents. Eye. 2019;33:965–73.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hacein-Bey L, Provenzale JM. Current Imaging Assessment and Treatment of Intracranial Aneurysms. Am. J. Roentgenol. 2011;196:32–44.

    Article  Google Scholar 

  37. Fernández S, Godino O, Martínez-Yélamos S, Mesa E, Arruga J, Ramón JM, et al. Cavernous Sinus Syndrome. Medicine. 2007;86:278–81.

    Article  PubMed  Google Scholar 

  38. Walter E, Trobe JD. The Clinical and Imaging Profile of Skew Deviation: A Study of 157 Cases. J. Neuro-Ophthalmol. 2020;41:69–76.

    Article  Google Scholar 

  39. Marinò M, Ionni I, Lanzolla G, Sframeli A, Latrofa F, Rocchi R, et al. Orbital diseases mimicking graves’ orbitopathy: a long-standing challenge in differential diagnosis. J. Endocrinol. Invest. 2020;43:401–11.

    Article  PubMed  Google Scholar 

Download references

Funding

Funding

This work was supported in part by an unrestricted grant to the Department of Ophthalmology, University of Colorado School of Medicine, by Research to Prevent Blindness, Inc.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and/or designed the work that led to the submission (SH, PSS), drafted or revised the manuscript (SC, ZS, SH, PSS), approved the final version (SC, ZS, SH, PSS), agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved (PSS).

Corresponding author

Correspondence to Prem S. Subramanian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cejvanovic, S., Sheikh, Z., Hamann, S. et al. Imaging the brain: diagnosis aided by structural features on neuroimaging studies. Eye (2024). https://doi.org/10.1038/s41433-024-03142-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41433-024-03142-w

This article is cited by

Search

Quick links