Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss-of-function variants in ERF are associated with a Noonan syndrome-like phenotype with or without craniosynostosis

Abstract

Pathogenic, largely truncating variants in the ETS2 repressor factor (ERF) gene, encoding a transcriptional regulator negatively controlling RAS-MAPK signaling, have been associated with syndromic craniosynostosis involving various cranial sutures and Chitayat syndrome, an ultrarare condition with respiratory distress, skeletal anomalies, and facial dysmorphism. Recently, a single patient with craniosynostosis and a phenotype resembling Noonan syndrome (NS), the most common disorder among the RASopathies, was reported to carry a de novo loss-of-function variant in ERF. Here, we clinically profile 26 individuals from 15 unrelated families carrying different germline heterozygous variants in ERF and showing a phenotype reminiscent of NS. The majority of subjects presented with a variable degree of global developmental and/or language delay. Their shared facial features included absolute/relative macrocephaly, high forehead, hypertelorism, palpebral ptosis, wide nasal bridge, and low-set/posteriorly angulated ears. Stature was below the 3rd centile in two-third of the individuals, while no subject showed typical NS cardiac involvement. Notably, craniosynostosis was documented only in three unrelated individuals, while a dolichocephalic aspect of the skull in absence of any other evidence supporting a premature closing of sutures was observed in other 10 subjects. Unilateral Wilms tumor was diagnosed in one individual. Most cases were familial, indicating an overall low impact on fitness. Variants were nonsense and frameshift changes, supporting ERF haploinsufficiency. These findings provide evidence that heterozygous loss-of-function variants in ERF cause a “RASopathy” resembling NS with or without craniosynostosis, and allow a first dissection of the molecular circuits contributing to MAPK signaling pleiotropy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Facial features of the subjects carrying heterozygous truncating variants in ERF.

Similar content being viewed by others

Data availability

The sequencing data that support the findings of this work are available on request from the corresponding author (MT). The data are not publicly available due to privacy/ethical restrictions. The pathogenic variants identified in this work and their clinical association have been submitted to ClinVar (SCV004229149 to SCV004229155, SCV004807477).

References

  1. Tidyman WE, Rauen KA. The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev. 2009;19:230–6. https://doi.org/10.1016/j.gde.2009.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tartaglia M, Gelb BD. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms. Ann NY Acad Sci. 2010;1214:99–121. https://doi.org/10.1111/j.1749-6632.2010.05790.x.

    Article  CAS  PubMed  Google Scholar 

  3. Tartaglia M, Gelb BD, Zenker M. Noonan syndrome and clinically related disorders. Best Pract Res Clin Endocrinol Metab. 2011;25:161–79. https://doi.org/10.1016/j.beem.2010.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roberts AE, Allanson JE, Tartaglia M, Gelb BD. Noonan syndrome. Lancet. 2013;26:333–42. https://doi.org/10.1016/S0140-6736(12)61023-X.

    Article  CAS  Google Scholar 

  5. Tartaglia M, Aoki Y, Gelb BD. The molecular genetics of RASopathies: an update on novel disease genes and new disorders. Am J Med Genet C Semin Med Genet. 2022;190:425–39. https://doi.org/10.1002/ajmg.c.32012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morris-Kay GM, Wilkie AOM. Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat. 2005;207:637–53. https://doi.org/10.1111/j.1469-7580.2005.00475.x.

    Article  Google Scholar 

  7. Hersh DS, Hughes CD. Syndromic craniosynostosis: unique management considerations. Neurosurg Clin N. Am. 2022;33:105–12. https://doi.org/10.1016/j.nec.2021.09.008.

    Article  PubMed  Google Scholar 

  8. Marbate T, Kedia S, Gupta DK. Evaluation and management of nonsyndromic craniosynostosis. J Pediatr Neurosci. 2022;17:S77–S91. https://doi.org/10.4103/jpn.JPN_17_22.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wilkie AOM. Craniosynostosis: genes and mechanisms. Hum Mol Genet. 1997;6:1647–56. https://doi.org/10.1093/hmg/6.10.1647.

    Article  CAS  PubMed  Google Scholar 

  10. Kim HJ, Lee MH, Park HS, Park MH, Lee SW, Kim SY, et al. Erk pathway and activator protein 1 play crucial roles in FGF2-stimulated premature cranial suture closure. Dev Dyn. 2003;227:335–46. https://doi.org/10.1002/dvdy.10319.

    Article  CAS  PubMed  Google Scholar 

  11. Shukla V, Coumoul X, Wang RH, Kim HS, Deng CX. RNA interference and inhibition of MEK-ERK signaling prevent abnormal skeletal phenotypes in a mouse model of craniosynostosis. Nat Genet. 2007;39:1145–50. https://doi.org/10.1038/ng2096.

    Article  CAS  PubMed  Google Scholar 

  12. Kratz CP, Zampino G, Kriek M, Kant SG, Leoni C, Pantaleoni F, et al. Craniosynostosis in patients with Noonan syndrome caused by germline KRAS mutations. Am J Med Genet A. 2009;149A:1036–40. https://doi.org/10.1002/ajmg.a.32786.

    Article  CAS  PubMed  Google Scholar 

  13. Brasil AS, Malaquias AC, Kim CA, Krieger JE, Jorge AA, Pereira AC, et al. KRAS gene mutations in Noonan syndrome familial cases cluster in the vicinity of the switch II region of the G-domain: report of another family with metopic craniosynostosis. Am J Med Genet A. 2012;158A:1178–84. https://doi.org/10.1002/ajmg.a.35270.

    Article  CAS  PubMed  Google Scholar 

  14. Takenouchi T, Sakamoto Y, Miwa T, Torii C, Kosaki R, Kishi K, et al. Severe craniosynostosis with Noonan syndrome phenotype associated with SHOC2 mutation: clinical evidence of crosslink between FGFR and RAS signaling pathways. Am J Med Genet A. 2014;164A:2869–72. https://doi.org/10.1002/ajmg.a.36705.

    Article  CAS  PubMed  Google Scholar 

  15. Addissie YA, Kotecha U, Hart RA, Martinez AF, Kruszka P, Muenke M. Craniosynostosis and Noonan syndrome with KRAS mutations: expanding the phenotype with a case report and review of the literature. Am J Med Genet A. 2015;167A:2657–63. https://doi.org/10.1002/ajmg.a.37259.

    Article  CAS  PubMed  Google Scholar 

  16. Ueda K, Yaoita M, Niihori T, Aoki Y, Okamoto N. Craniosynostosis in patients with RASopathies: accumulating clinical evidence for expanding the phenotype. Am J Med Genet A. 2017;173:2346–52. https://doi.org/10.1002/ajmg.a.38337.

    Article  CAS  PubMed  Google Scholar 

  17. McDonald BS, Pigors M, Kelsell DP, O’Toole EA, Burkitt-Wright E, Kerr B, et al. Noonan syndrome with multiple lentigines and associated craniosynostosis. Clin Exp Dermatol. 2018;43:357–59. https://doi.org/10.1111/ced.13329.

    Article  CAS  PubMed  Google Scholar 

  18. Davis AA, Zuccoli G, Haredy MM, Losee J, Pollack IF, Madan-Khetarpal S, et al. RASopathy in patients with isolated sagittal synostosis. Glob Pediatr Health. 2019;6:2333794X19846774. https://doi.org/10.1177/2333794X19846774.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rodríguez F, Ponce D, Berward FJ, Lopetegui B, Cassorla F, Aracena M. RAF1 variant in a patient with Noonan syndrome with multiple lentigines and craniosynostosis. Am J Med Genet A. 2019;179:1598–602. https://doi.org/10.1002/ajmg.a.61203.

    Article  CAS  PubMed  Google Scholar 

  20. Weaver KN, Care M, Wakefield E, Zarate YA, Skoch J, Gripp KW, et al. Craniosynostosis is a feature of Costello syndrome. Am J Med Genet A. 2022;188:1280–6. https://doi.org/10.1002/ajmg.a.62620.

    Article  PubMed  Google Scholar 

  21. Oikawa T, Yamada T. Molecular biology of the Ets family of transcription factors. Gene. 2003;16:11–34. https://doi.org/10.1016/s0378-1119(02)01156-3.

    Article  Google Scholar 

  22. Sgouras DN, Athanasiou MA, Beal GJ Jr, Fisher RJ, Blair DG, Mavrothalassitis GJ. ERF: an ETS domain protein with strong transcriptional repressor activity, can suppress ets-associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation. EMBO J. 1995;2:4781–93. https://doi.org/10.1002/j.1460-2075.1995.tb00160.x.

    Article  Google Scholar 

  23. le Gallic L, Sgouras D, Beal G Jr, Mavrothalassitis G. Transcriptional repressor ERF is a Ras/mitogen-activated protein kinase target that regulates cellular proliferation. Mol Cell Biol. 1999;19:4121–33. https://doi.org/10.1128/MCB.19.6.4121.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Papadaki C, Alexiou M, Cecena G, Verykokakis M, Bilitou A, Cross JC, et al. Transcriptional repressor erf determines extraembryonic ectoderm differentiation. Mol Cell Biol. 2007;27:5201–13. https://doi.org/10.1128/MCB.02237-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Twigg SR, Vorgia E, McGowan SJ, Peraki I, Fenwick AL, et al. Reduced dosage of ERF causes complex craniosynostosis in humans and mice and links ERK1/2 signaling to regulation of osteogenesis. Nat Genet. 2013;45:308–13. https://doi.org/10.1038/ng.2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peraki I, Palis J, Mavrothalassitis G. The Ets2 repressor factor (Erf) is required for effective primitive and definitive hematopoiesis. Mol Cell Biol. 2017;12:e00183–17. https://doi.org/10.1128/MCB.00183-17.

    Article  Google Scholar 

  27. Chaudhry A, Sabatini P, Han L, Ray PN, Forrest C, Bowdin S. Heterozygous mutations in ERF cause syndromic craniosynostosis with multiple suture involvement. Am J Med Genet A. 2015;167A:2544–7. https://doi.org/10.1002/ajmg.a.37218.

    Article  CAS  PubMed  Google Scholar 

  28. Glass GE, O’Hara J, Canham N, Cilliers D, Dunaway D, Fenwick AL, et al. ERF-related craniosynostosis: the phenotypic and developmental profile of a new craniosynostosis syndrome. Am J Med Genet A. 2019;179:615–27. https://doi.org/10.1002/ajmg.a.61073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Körberg I, Nowinski D, Bondeson ML, Melin M, Kölby L, Stattin EL. A progressive and complex clinical course in two family members with ERF-related craniosynostosis: a case report. BMC Med Genet. 2020;5:90 https://doi.org/10.1186/s12881-020-01015-z.

    Article  CAS  Google Scholar 

  30. Moddemann MK, Kieslich M, Koenig R. Intrafamilial variability in six family members with ERF-related craniosynostosis syndrome type 4. Am J Med Genet A. 2022;188:2969–75. https://doi.org/10.1002/ajmg.a.62900.

    Article  CAS  PubMed  Google Scholar 

  31. le Gallic L, Virgilio L, Cohen P, Biteau B, Mavrothalassitis G. ERF nuclear shuttling, a continuous monitor of Erk activity that links it to cell cycle progression. Mol Cell Biol. 2004;24:1206–18. https://doi.org/10.1128/MCB.24.3.1206-1218.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Balasubramanian M, Lord H, Levesque S, Guturu H, Thuriot F, Sillon G, et al. Chitayat syndrome: hyperphalangism, characteristic facies, hallux valgus and bronchomalacia results from a recurrent c.266A>G p.(Tyr89Cys) variant in the ERF gene. J Med Genet. 2017;54:157–65. https://doi.org/10.1136/jmedgenet-2016-104143.

    Article  CAS  PubMed  Google Scholar 

  33. Chitayat D, Haj-Chahine S, Stalker HJ, Azouz EM, Côté A, Halal F. Hyperphalangism, facial anomalies, hallux valgus, and bronchomalacia: a new syndrome? Am J Med Genet. 1993;1:1–4. https://doi.org/10.1002/ajmg.1320450103.

    Article  Google Scholar 

  34. Caro-Contreras A, Alcántara-Ortigoza MA, Ahumada-Pérez JF, González-Del Angel A. Molecular analysis provides further evidence that Chitayat syndrome is caused by the recurrent p.(Tyr89Cys) pathogenic variant in the ERF gene. Am J Med Genet A. 2019;179:118–22. https://doi.org/10.1002/ajmg.a.60676.

    Article  CAS  PubMed  Google Scholar 

  35. Shin SH, StJoseph E, Mannan K, Khan K. Radiography of Chitayat syndrome in an infant male. Radio Case Rep. 2019;24:448–51. https://doi.org/10.1016/j.radcr.2019.01.003.

    Article  Google Scholar 

  36. Suter AA, Santos-Simarro F, Toerring PM, Abad Perez A, Ramos-Mejia R, Heath KE, et al. Variable pulmonary manifestations in Chitayat syndrome: six additional affected individuals. Am J Med Genet A. 2020;182:2068–76. https://doi.org/10.1002/ajmg.a.61735.

    Article  CAS  PubMed  Google Scholar 

  37. Yamada M, Funato M, Kondo G, Suzuki H, Uehara T, Takenouchi T, et al. Noonan syndrome-like phenotype in a patient with heterozygous ERF truncating variant. Congenit Anom. 2021;61:226–30. https://doi.org/10.1111/cga.12435.

    Article  CAS  Google Scholar 

  38. Motta M, Fasano G, Gredy S, Brinkmann J, Bonnard AA, Simsek-Kiper PO, et al. SPRED2 loss-of-function causes a recessive Noonan syndrome-like phenotype. Am J Hum Genet. 2021;4:2112–29. https://doi.org/10.1016/j.ajhg.2021.09.007.

    Article  CAS  Google Scholar 

  39. Fasano G, Muto V, Radio FC, Venditti M, Mosaddeghzadeh N, Coppola S, et al. Dominant ARF3 variants disrupt Golgi integrity and cause a neurodevelopmental disorder recapitulated in zebrafish. Nat Commun. 2022;11:6841. https://doi.org/10.1038/s41467-022-34354-x.

    Article  CAS  Google Scholar 

  40. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gurovich Y, Hanani Y, Bar O, Nadav G, Fleischer N, Gelbman D, et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat Med. 2019;25:60–4. https://doi.org/10.1038/s41591-018-0279-0.

    Article  CAS  PubMed  Google Scholar 

  42. Weaver KN, Gripp KW. Central nervous system involvement in individuals with RASopathies. Am J Med Genet C Semin Med Genet. 2022;190:494–500. https://doi.org/10.1002/ajmg.c.32023.

    Article  CAS  PubMed  Google Scholar 

  43. Sarkozy A, Carta C, Moretti S, Zampino G, Digilio MC, Pantaleoni F, et al. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Hum Mutat. 2009;30:695–702. https://doi.org/10.1002/humu.20955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gripp KW, Aldinger KA, Bennett JT, Baker L, Tusi J, Powell-Hamilton N, et al. A novel rasopathy caused by recurrent de novo missense mutations In PPP1CB closely resembles Noonan syndrome with loose anagen hair. Am J Med Genet A. 2016;170:2237–47. https://doi.org/10.1002/ajmg.a.37781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pantaleoni F, Lev D, Cirstea IC, Motta M, Lepri FR, Bottero L, et al. Aberrant HRAS transcript processing underlies a distinctive phenotype within the RASopathy clinical spectrum. Hum Mutat. 2017;38:798–804. https://doi.org/10.1002/humu.23224.

    Article  CAS  PubMed  Google Scholar 

  46. Care H, Luscombe C, Wall SA, Dalton L, Johnson D, Wilkie AOM. Cognitive, behavioural, speech, language and developmental outcomes associated with pathogenic variants in the ERF gene. J Craniofac Surg. 2022;33:1847–52. https://doi.org/10.1097/SCS.0000000000008659.

    Article  PubMed  Google Scholar 

  47. Mayor-Ruiz C, Olbrich T, Drosten M, Lecona E, Vega-Sendino M, Ortega S, et al. ERF deletion rescues RAS deficiency in mouse embryonic stem cells. Genes Dev. 2018;1:568–76. https://doi.org/10.1101/gad.310086.117.

    Article  CAS  Google Scholar 

  48. Vogiatzi A, Keklikoglou K, Makris K, Argyrou DS, Zacharopoulos A, Sotiropoulou V, et al. Development of Erf-mediated craniosynostosis and pharmacological amelioration. Int J Mol Sci. 2023;24:7961. https://doi.org/10.3390/ijms24097961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hou C, McCown C, Ivanov DN, Tsodikov OV. Structural insight into the DNA binding function of transcription factor ERF. Biochemistry. 2020;11:https://doi.org/10.1021/acs.biochem.0c00774.

    Google Scholar 

  50. Pio F, Kodandapani R, Ni CZ, Shepard W, Klemsz M, McKercher SR, et al. New insights on DNA recognition by ets proteins from the crystal structure of the PU.1 ETS domain-DNA complex. J Biol Chem. 1996;20:23329–37. https://doi.org/10.1074/jbc.271.38.23329.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the families who participated in this study. This work has been carried out in the frame of the “European Reference Network for Rare Malformation Syndromes, Intellectual and Other Neurodevelopmental Disorders” (ERN-ITHACA) activity.

Funding

This work was supported by the Italian Ministry of Health (5 per 1000_2024, Current Research Funds and PNRR-MR1-2022-12376811 to MT, and 5×1000_2023 to AC), Fondazione AIRC (IG28768, to MT), and European Joint Programme on Rare Diseases (NSEuroNet to MT, HC, and MZ).

Author information

Authors and Affiliations

Authors

Contributions

MT conceived the work. MLD, MN and MT took the lead in writing the manuscript. MN, FRL, CM, AAB, CC, AC, SP, VC, CR, MF, MM, ET, AN, ADL, and HC performed the genomic analyses and analyzed and validated the genomic data. MN, CL, VLC, CF, MB, GB, LS, SB, AG, DC, LM, CS, ML, CM, AS, DG, ES, GZ, MZ, AM, BD, and MCD collected the clinical data. MLD and MP performed the clinical data analyses. All coauthors provided critical feedback on the manuscript.

Corresponding author

Correspondence to Marco Tartaglia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study was approved by the local Institutional Ethical Committee (ref. NRR-MR1-2022-12376811). Clinical data, pictures, and DNA samples were collected, used, and stored after signed informed consent from the participating subjects/families were secured. Written informed consents were obtained for the publication of individual pictures.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dentici, M.L., Niceta, M., Lepri, F.R. et al. Loss-of-function variants in ERF are associated with a Noonan syndrome-like phenotype with or without craniosynostosis. Eur J Hum Genet (2024). https://doi.org/10.1038/s41431-024-01642-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41431-024-01642-7

Search

Quick links