Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neutrophils disrupt B-1a cell homeostasis by targeting Siglec-G to exacerbate sepsis

Abstract

B-1a cells, an innate-like cell population, are crucial for pathogen defense and the regulation of inflammation through their release of natural IgM and IL-10. In sepsis, B-1a cell numbers are decreased in the peritoneal cavity as they robustly migrate to the spleen. Within the spleen, migrating B-1a cells differentiate into plasma cells, leading to alterations in their original phenotype and functionality. We discovered a key player, sialic acid-binding immunoglobulin-like lectin-G (Siglec-G), which is expressed predominantly on B-1a cells and negatively regulates B-1a cell migration to maintain homeostasis. Siglec-G interacts with CXCR4/CXCL12 to modulate B-1a cell migration. Neutrophils aid B-1a cell migration via neutrophil elastase (NE)-mediated Siglec-G cleavage. Human studies revealed increased NE expression in septic patients. We identified an NE cleavage sequence in silico, leading to the discovery of a decoy peptide that protects Siglec-G, preserves peritoneal B-1a cells, reduces inflammation, and enhances sepsis survival. The role of Siglec-G in inhibiting B-1a cell migration to maintain their inherent phenotype and function is compromised by NE in sepsis, offering valuable insights into B-1a cell homeostasis. Employing a small decoy peptide to prevent NE-mediated Siglec-G cleavage has emerged as a promising strategy to sustain peritoneal B-1a cell homeostasis, alleviate inflammation, and ultimately improve outcomes in sepsis patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama 2016;315:801–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in sepsis. Front Immunol 2019;10:2536.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Aziz M, Holodick NE, Rothstein TL, Wang P. The role of B-1 cells in inflammation. Immunol Res 2015;63:153–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Aziz M, Holodick NE, Rothstein TL, Wang P. B-1a cells protect mice from sepsis: Critical role of CREB. J Immunol 2017;199:750–60.

    CAS  PubMed  Google Scholar 

  5. Griffin DO, Holodick NE, Rothstein TL. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med 2011;208:67–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Griffin DO, Rothstein TL. A small CD11b(+) human B1 cell subpopulation stimulates T cells and is expanded in lupus. J Exp Med 2011;208:2591–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 2011;11:34–46.

    CAS  PubMed  Google Scholar 

  8. Kantor AB, Herzenberg LA. Origin of murine B cell lineages. Annu Rev Immunol 1993;11:501–38.

    CAS  PubMed  Google Scholar 

  9. Stall AM, Adams S, Herzenberg LA, Kantor AB. Characteristics and development of the murine B-1b (Ly-1 B sister) cell population. Ann N. Y Acad Sci 1992;651:33–43.

    CAS  PubMed  Google Scholar 

  10. Baumgarth N. A Hard(y) look at B-1 cell development and function. J Immunol 2017;199:3387–94.

    CAS  PubMed  Google Scholar 

  11. Berland R, Wortis HH. Origins and functions of B-1 cells with notes on the role of CD5. Annu Rev Immunol 2002;20:253–300.

    CAS  PubMed  Google Scholar 

  12. Ha SA, Tsuji M, Suzuki K, Meek B, Yasuda N, Kaisho T, et al. Regulation of B1 cell migration by signals through Toll-like receptors. J Exp Med 2006;203:2541–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kelly-Scumpia KM, Scumpia PO, Weinstein JS, Delano MJ, Cuenca AG, Nacionales DC, et al. B cells enhance early innate immune responses during bacterial sepsis. J Exp Med 2011;208:1673–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE Jr, Hui JJ, Chang KC, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol 2001;166:6952–63.

    CAS  PubMed  Google Scholar 

  15. Aziz M, Ode Y, Zhou M, Ochani M, Holodick NE, Rothstein TL, et al. B-1a cells protect mice from sepsis-induced acute lung injury. Mol Med 2018;24:26.

    PubMed  PubMed Central  Google Scholar 

  16. Ansel KM, Harris RB, Cyster JG. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunity 2002;16:67–76.

    CAS  PubMed  Google Scholar 

  17. Klasen C, Ohl K, Sternkopf M, Shachar I, Schmitz C, Heussen N, et al. MIF promotes B cell chemotaxis through the receptors CXCR4 and CD74 and ZAP-70 signaling. J Immunol 2014;192:5273–84.

    CAS  PubMed  Google Scholar 

  18. Yang Y, Tung JW, Ghosn EE, Herzenberg LA, Herzenberg LA. Division and differentiation of natural antibody-producing cells in mouse spleen. Proc Natl Acad Sci USA 2007;104:4542–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoffmann A, Kerr S, Jellusova J, Zhang J, Weisel F, Wellmann U, et al. Siglec-G is a B1 cell-inhibitory receptor that controls expansion and calcium signaling of the B1 cell population. Nat Immunol 2007;8:695–704.

    CAS  PubMed  Google Scholar 

  20. Nitschke L. Siglec-G is a B-1 cell inhibitory receptor and also controls B cell tolerance. Ann N Y Acad Sci 2015;1362:117–21.

    CAS  PubMed  Google Scholar 

  21. Royster W, Wang P, Aziz M. The role of Siglec-G on immune cells in sepsis. Front Immunol 2021;12:621627.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jellusova J, Düber S, Gückel E, Binder CJ, Weiss S, Voll R, et al. Siglec-G regulates B1 cell survival and selection. J Immunol 2010;185:3277–84.

    CAS  PubMed  Google Scholar 

  23. Müller J, Nitschke L. The role of CD22 and Siglec-G in B-cell tolerance and autoimmune disease. Nat Rev Rheumatol 2014;10:422–8.

    PubMed  Google Scholar 

  24. Ding C, Liu Y, Wang Y, Park BK, Wang CY, Zheng P, et al. Siglecg limits the size of B1a B cell lineage by down-regulating NFkappaB activation. PLoS ONE 2007;2:e997.

    PubMed  PubMed Central  Google Scholar 

  25. Royster W, Jin H, Wang P, Aziz M. Extracellular CIRP decreases Siglec-G expression on B-1a cells skewing them towards a pro-inflammatory phenotype in sepsis. Mol Med 2021;27:55.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 2009;323:1722–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Alves-Filho JC, Spiller F, Cunha FQ. Neutrophil paralysis in sepsis. Shock 2010;34:15–21.

    PubMed  Google Scholar 

  28. Tan C, Gu J, Chen H, Li T, Deng H, Liu K, et al. Inhibition of aerobic glycolysis promotes neutrophil to influx to the infectious site via CXCR2 in sepsis. Shock 2020;53:114–23.

    CAS  PubMed  Google Scholar 

  29. Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020;19:253–75.

    PubMed  Google Scholar 

  30. Johansson C, Kirsebom FCM. Neutrophils in respiratory viral infections. Mucosal Immunol 2021;14:815–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Khodadadi L, Cheng Q, Radbruch A, Hiepe F. The maintenance of memory plasma cells. Front Immunol 2019;10:721.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Berberich S, Förster R, Pabst O. The peritoneal micromilieu commits B cells to home to body cavities and the small intestine. Blood 2007;109:4627–34.

    CAS  PubMed  Google Scholar 

  33. Lévesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003;111:187–96.

    PubMed  PubMed Central  Google Scholar 

  34. Valenzuela-Fernández A, Planchenault T, Baleux F, Staropoli I, Le-Barillec K, Leduc D, et al. Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem 2002;277:15677–89.

    PubMed  Google Scholar 

  35. Trier N, Hansen P, Houen G. Peptides, antibodies, peptide antibodies and more. Int J Mol Sci 2019;20:20.

    Google Scholar 

  36. Quách TD, Rodríguez-Zhurbenko N, Hopkins TJ, Guo X, Hernández AM, Li W, et al. Distinctions among circulating antibody-secreting cell populations, including B-1 cells, in human adult peripheral blood. J Immunol 2016;196:1060–9.

    PubMed  Google Scholar 

  37. Weber GF, Chousterman BG, Hilgendorf I, Robbins CS, Theurl I, Gerhardt LM, et al. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis. J Exp Med 2014;211:1243–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2007;7:255–66.

    CAS  PubMed  Google Scholar 

  39. Bannert N, Craig S, Farzan M, Sogah D, Santo NV, Choe H, et al. Sialylated O-glycans and sulfated tyrosines in the NH2-terminal domain of CC chemokine receptor 5 contribute to high affinity binding of chemokines. J Exp Med 2001;194:1661–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Frommhold D, Ludwig A, Bixel MG, Zarbock A, Babushkina I, Weissinger M, et al. Sialyltransferase ST3Gal-IV controls CXCR2-mediated firm leukocyte arrest during inflammation. J Exp Med 2008;205:1435–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Su ML, Chang TM, Chiang CH, Chang HC, Hou MF, Li WS, et al. Inhibition of chemokine (C-C motif) receptor 7 sialylation suppresses CCL19-stimulated proliferation, invasion and anti-anoikis. PLoS ONE 2014;9:e98823.

    PubMed  PubMed Central  Google Scholar 

  42. Wang J, Babcock GJ, Choe H, Farzan M, Sodroski J, Gabuzda D. N-linked glycosylation in the CXCR4 N-terminus inhibits binding to HIV-1 envelope glycoproteins. Virology 2004;324:140–50.

    CAS  PubMed  Google Scholar 

  43. Zhou H, Tai HH. Characterization of recombinant human CXCR4 in insect cells: role of extracellular domains and N-glycosylation in ligand binding. Arch Biochem Biophys 1999;369:267–76.

    CAS  PubMed  Google Scholar 

  44. Holodick NE, Repetny K, Zhong X, Rothstein TL. Adult BM generates CD5+ B1 cells containing abundant N-region additions. Eur J Immunol 2009;39:2383–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 2015;349:316–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen L, Zhao Y, Lai D, Zhang P, Yang Y, Li Y, et al. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis 2018;9:597.

    PubMed  PubMed Central  Google Scholar 

  47. Wang J, Kubes P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell 2016;165:668–78.

    CAS  PubMed  Google Scholar 

  48. Pepin M, Mezouar S, Pegon J, Muczynski V, Adam F, Bianchini EP, et al. Soluble Siglec-5 associates to PSGL-1 and displays anti-inflammatory activity. Sci Rep. 2016;6:37953.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Oliveira JJ, Karrar S, Rainbow DB, Pinder CL, Clarke P, Rubio García A, et al. The plasma biomarker soluble SIGLEC-1 is associated with the type I interferon transcriptional signature, ethnic background and renal disease in systemic lupus erythematosus. Arthritis Res Ther 2018;20:152.

    PubMed  PubMed Central  Google Scholar 

  50. Stuckrad SLV, Klotsche J, Biesen R, Lieber M, Thumfart J, Meisel C, et al. SIGLEC1 (CD169) is a sensitive biomarker for the deterioration of the clinical course in childhood systemic lupus erythematosus. Lupus 2020;29:1914–25.

    PubMed  Google Scholar 

  51. Qiang X, Yang WL, Wu R, Zhou M, Jacob A, Dong W, et al. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat Med 2013;19:1489–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jin H, Aziz M, Murao A, Kobritz M, Shih AJ, Adelson RP, et al. Antigen-presenting aged neutrophils induce CD4+ T cells to exacerbate inflammation in sepsis. J Clin Invest 2023;133:133.

    Google Scholar 

  53. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12:7–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Quignot C, Postic G, Bret H, Rey J, Granger P, Murail S, et al. InterEvDock3: a combined template-based and free docking server with increased performance through explicit modeling of complex homologs and integration of covariation-based contact maps. Nucleic Acids Res 2021;49:W277–W284.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schindler CE, de Vries SJ, Zacharias M. iATTRACT: simultaneous global and local interface optimization for protein-protein docking refinement. Proteins 2015;83:248–58.

    CAS  PubMed  Google Scholar 

  56. Lee H, Seok C. Template-based prediction of protein-peptide interactions by using GalaxyPepDock. Methods Mol Biol 2017;1561:37–47.

    CAS  PubMed  Google Scholar 

  57. Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007;372:774–97.

    CAS  PubMed  Google Scholar 

  58. Sanner MF, Olson AJ, Spehner JC. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 1996;38:305–20.

    CAS  PubMed  Google Scholar 

  59. Darden DB, Dong X, Brusko MA, Kelly L, Fenner B, Rincon JC, et al. A novel single cell RNA-seq analysis of non-myeloid circulating cells in late sepsis. Front Immunol 2021;12:696536.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We prepared schematic figures using BioRender.

Funding

This work was supported in part by National Institutes of Health (NIH) grants R35GM118337 (PW) and R01GM129633 (MA) as well as the Research Investigator Fellowship from the Shock Society (CT).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CT, MA, PW; Methodology: CT, BR, GM, AM, AJ, MA, PW; Investigation: CT, BR, GM, AM, AJ, MA, PW; Visualization: CT, MA, PW; Funding acquisition: MA, PW; Project administration: MA, PW; Supervision: MA, PW; Writing—original draft: CT, MA; Writing—review & editing: CT, BR, MA, AM, PW.

Corresponding authors

Correspondence to Monowar Aziz or Ping Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Reilly, B., Ma, G. et al. Neutrophils disrupt B-1a cell homeostasis by targeting Siglec-G to exacerbate sepsis. Cell Mol Immunol 21, 707–722 (2024). https://doi.org/10.1038/s41423-024-01165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-024-01165-7

Keywords

Search

Quick links