Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Inhibition of post-lanosterol biosynthesis by fentanyl: potential implications for Fetal Fentanyl Syndrome (FFS)

Abstract

A recent study discovered a novel, complex developmental disability syndrome, most likely caused by maternal fentanyl use disorder. This Fetal Fentanyl Syndrome (FFS) is biochemically characterized by elevated 7-dehydrocholesterol (7-DHC) levels in neonates, raising the question if fentanyl inhibition of the dehydrocholesterol reductase 7 (DHCR7) enzyme is causal for the emergence of the pathophysiology and phenotypic features of FFS. To test this hypothesis, we undertook a series of experiments on Neuro2a cells, primary mouse neuronal and astrocytic cultures, and human dermal fibroblasts (HDFs) with DHCR7+/+ and DHCR7+/ genotype. Our results revealed that in vitro exposure to fentanyl disrupted sterol biosynthesis across all four in vitro models. The sterol biosynthesis disruption by fentanyl was complex, and encompassed the majority of post-lanosterol intermediates, including elevated 7-DHC and decreased desmosterol (DES) levels across all investigated models. The overall findings suggested that maternal fentanyl use in the context of an opioid use disorder leads to FFS in the developing fetus through a strong disruption of the whole post-lanosterol pathway that is more complex than a simple DHCR7 inhibition. In follow-up experiments we found that heterozygous DHCR7+/ HDFs were significantly more susceptible to the sterol biosynthesis inhibitory effects of fentanyl than wild-type DHCR7+/+ fibroblasts. These data suggest that DHCR7+/ heterozygosity of mother and/or developing child (and potentially other sterol biosynthesis genes), when combined with maternal fentanyl use disorder, might be a significant contributory factor to the emergence of FFS in the exposed offspring. In a broader context, we believe that evaluation of new and existing medications for their effects on sterol biosynthesis should be an essential consideration during drug safety determinations, especially in pregnancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of fentanyl on post-lanosterol biosynthesis in Neuro2a cells.
Fig. 2: Effects of fentanyl on post-lanosterol biosynthesis in developing astrocytes.
Fig. 3: Effects of fentanyl on post-lanosterol biosynthesis in developing neurons.
Fig. 4: Biochemical signature of fentanyl exposure across Neuro2a cells, astrocytes and neurons.
Fig. 5: Effect of fentanyl on post-lanosterol biosynthesis in DHCR7+/ and DHCR7+/+ human dermal fibroblasts.
Fig. 6

Similar content being viewed by others

References

  1. Pownall HJ, Gotto AM Jr. Cholesterol: Can’t Live With It, Can’t Live Without It. Methodist Debakey Cardiovasc J. 2019;15:9–15.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dietschy JM, Turley SD. Cholesterol metabolism in the brain. Curr Opin Lipidol. 2001;12:105–12.

    Article  CAS  PubMed  Google Scholar 

  3. Dietschy JM, Turley SD. Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004;45:1375–97.

    Article  CAS  PubMed  Google Scholar 

  4. Dietschy JM. Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol Chem. 2009;390:287–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Funfschilling U, Jockusch WJ, Sivakumar N, Mobius W, Corthals K, Li S, et al. Critical time window of neuronal cholesterol synthesis during neurite outgrowth. J Neurosci. 2012;32:7632–45.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mazein A, Watterson S, Hsieh WY, Griffiths WJ, Ghazal P. A comprehensive machine-readable view of the mammalian cholesterol biosynthesis pathway. Biochem Pharmacol. 2013;86:56–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Porter FD. Smith-Lemli-Opitz syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet. 2008;16:535–41.

    Article  CAS  PubMed  Google Scholar 

  8. Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. J Lipid Res. 2011;52:6–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tint GS, Irons M, Elias ER, Batta AK, Frieden R, Chen TS, et al. Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. N Engl J Med. 1994;330:107–13.

    Article  CAS  PubMed  Google Scholar 

  10. Sikora DM, Pettit-Kekel K, Penfield J, Merkens LS, Steiner RD. The near universal presence of autism spectrum disorders in children with Smith-Lemli-Opitz syndrome. Am J Med Genet A. 2006;140:1511–8.

    Article  PubMed  Google Scholar 

  11. Cross JL, Iben J, Simpson CL, Thurm A, Swedo S, Tierney E, et al. Determination of the allelic frequency in Smith-Lemli-Opitz syndrome by analysis of massively parallel sequencing data sets. Clin Genet. 2015;87:570–5.

    Article  CAS  PubMed  Google Scholar 

  12. Wassif CA, Maslen C, Kachilele-Linjewile S, Lin D, Linck LM, Connor WE, et al. Mutations in the human sterol delta7-reductase gene at 11q12-13 cause Smith-Lemli-Opitz syndrome. Am J Hum Genet. 1998;63:55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu W, Xu L, Lamberson CR, Merkens LS, Steiner RD, Elias ER, et al. Assays of plasma dehydrocholesteryl esters and oxysterols from Smith-Lemli-Opitz syndrome patients. J Lipid Res. 2013;54:244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wassif CA, Vied D, Tsokos M, Connor WE, Steiner RD, Porter FD. Cholesterol storage defect in RSH/Smith-Lemli-Opitz syndrome fibroblasts. Mol Genet Metab. 2002;75:325–34.

    Article  CAS  PubMed  Google Scholar 

  15. Tint GS, Salen G, Batta AK, Shefer S, Irons M, Elias ER, et al. Correlation of severity and outcome with plasma sterol levels in variants of the Smith-Lemli-Opitz syndrome. J Pediatr. 1995;127:82–7.

    Article  CAS  PubMed  Google Scholar 

  16. Wadman E, Fernandes E, Muss C, Powell-Hamilton N, Wojcik MH, Madden JA, et al. A novel syndrome associated with prenatal fentanyl exposure. Genet Med Open. 2023;1:100834.

    Article  Google Scholar 

  17. Gibson KM, Hoffmann G, Schwall A, Broock RL, Aramaki S, Sweetman L, et al. 3-Hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured fibroblasts from patients with mevalonate kinase deficiency: differential response to lipid supplied by fetal bovine serum in tissue culture medium. J Lipid Res. 1990;31:515–21.

    Article  CAS  PubMed  Google Scholar 

  18. Korade Z, Genaro-Mattos TC, Tallman KA, Liu W, Garbett KA, Koczok K, et al. Vulnerability of DHCR7(+/-) mutation carriers to aripiprazole and trazodone exposure. J Lipid Res. 2017;58:2139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu W, Xu L, Lamberson C, Haas D, Korade Z, Porter NA. A highly sensitive method for analysis of 7-dehydrocholesterol for the study of Smith-Lemli-Opitz syndrome. J Lipid Res. 2014;55:329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tallman KA, Allen LB, Klingelsmith KB, Anderson A, Genaro-Mattos TC, Mirnics K, et al. Prescription medications alter neuronal and glial cholesterol synthesis. ACS Chem Neurosci. 2021;12:735–45.

    Article  CAS  PubMed  Google Scholar 

  21. Goudriaan A, Camargo N, Carney KE, Oliet SH, Smit AB, Verheijen MH. Novel cell separation method for molecular analysis of neuron-astrocyte co-cultures. Front Cell Neurosci. 2014;8:12.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Comer SD, Cahill CM. Fentanyl: receptor pharmacology, abuse potential, and implications for treatment. Neurosci Biobehav Rev. 2019;106:49–57.

    Article  CAS  PubMed  Google Scholar 

  23. Korade Z, Tallman KA, Kim HH, Balog M, Genaro-Mattos TC, Pattnaik A, et al. Dose-response effects of 7-dehydrocholesterol reductase inhibitors on sterol profiles and vesicular stomatitis virus replication. ACS Pharmacol Transl Sci. 2022;5:1086–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Genaro-Mattos TC, Allen LB, Anderson A, Tallman KA, Porter NA, Korade Z, et al. Maternal aripiprazole exposure interacts with 7-dehydrocholesterol reductase mutations and alters embryonic neurodevelopment. Mol Psychiatry. 2019;24:491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Genaro-Mattos TC, Anderson A, Allen LB, Tallman KA, Porter NA, Korade Z, et al. Maternal cariprazine exposure inhibits embryonic and postnatal brain cholesterol biosynthesis. Mol Psychiatry. 2020;25:2685–94.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Genaro-Mattos TC, Klingelsmith KB, Allen LB, Anderson A, Tallman KA, Porter NA, et al. Sterol biosynthesis inhibition in pregnant women taking prescription medications. ACS Pharmacol Transl Sci. 2021;4:848–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Korade Z, Allen LB, Anderson A, Tallman KA, Genaro-Mattos TC, Porter NA, et al. Trazodone effects on developing brain. Transl Psychiatry. 2021;11:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Korade Z, Heffer M, Mirnics K. Medication effects on developmental sterol biosynthesis. Mol Psychiatry. 2022;27:490–501.

    Article  PubMed  Google Scholar 

  29. Yossuck P, Tacker DH. Drug positivity findings from a universal umbilical cord tissue drug analysis program in appalachia. J Appl Lab Med. 2021;6:285–97.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yazdy MM, Desai RJ, Brogly SB. Prescription opioids in pregnancy and birth outcomes: a review of the literature. J Pediatr Genet. 2015;4:56–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lind JN, Interrante JD, Ailes EC, Gilboa SM, Khan S, Frey MT, et al. Maternal use of opioids during pregnancy and congenital malformations: a systematic review. Pediatrics. 2017;139:e20164131.

    Article  PubMed  Google Scholar 

  32. Tierney E, Nwokoro NA, Porter FD, Freund LS, Ghuman JK, Kelley RI. Behavior phenotype in the RSH/Smith-Lemli-Opitz syndrome. Am J Med Genet. 2001;98:191–200.

    Article  CAS  PubMed  Google Scholar 

  33. Alipio JB, Haga C, Fox ME, Arakawa K, Balaji R, Cramer N, et al. Perinatal fentanyl exposure leads to long-lasting impairments in somatosensory circuit function and behavior. J Neurosci. 2021;41:3400–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fujii K, Koshidaka Y, Adachi M, Takao K. Effects of chronic fentanyl administration on behavioral characteristics of mice. Neuropsychopharmacol Rep. 2019;39:17–35.

    Article  CAS  PubMed  Google Scholar 

  35. Chakrabarti S, Law PY, Loh HH. Neuroblastoma Neuro2A cells stably expressing a cloned mu-opioid receptor: a specific cellular model to study acute and chronic effects of morphine. Brain Res. Mol Brain Res. 1995;30:269–78.

    Article  CAS  PubMed  Google Scholar 

  36. Correa-Cerro LS, Wassif CA, Kratz L, Miller GF, Munasinghe JP, Grinberg A, et al. Development and characterization of a hypomorphic Smith-Lemli-Opitz syndrome mouse model and efficacy of simvastatin therapy. Hum Mol Genet. 2006;15:839–51.

    Article  CAS  PubMed  Google Scholar 

  37. Xu L, Porter NA. Reactivities and products of free radical oxidation of cholestadienols. J Am Chem Soc. 2014;136:5443–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu L, Porter NA. Free radical oxidation of cholesterol and its precursors: implications in cholesterol biosynthesis disorders. Free Radic Res. 2015;49:835–49.

    Article  CAS  PubMed  Google Scholar 

  39. Xu L, Mirnics K, Bowman AB, Liu W, Da J, Porter NA, et al. DHCEO accumulation is a critical mediator of pathophysiology in a Smith-Lemli-Opitz syndrome model. Neurobiol Dis. 2012;45:923–9.

    Article  CAS  PubMed  Google Scholar 

  40. Yang C, Qi Y, Sun Z. The role of sonic hedgehog pathway in the development of the central nervous system and aging-related neurodegenerative diseases. Front Mol Biosci. 2021;8:711710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Memi F, Zecevic N, Radonjic N. Multiple roles of Sonic Hedgehog in the developing human cortex are suggested by its widespread distribution. Brain Struct Funct. 2018;223:2361–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koide T, Hayata T, Cho KW. Negative regulation of Hedgehog signaling by the cholesterogenic enzyme 7-dehydrocholesterol reductase. Development. 2006;133:2395–405.

    Article  CAS  PubMed  Google Scholar 

  43. Kim HY, Korade Z, Tallman KA, Liu W, Weaver CD, Mirnics K, et al. Inhibitors of 7-dehydrocholesterol reductase: screening of a collection of pharmacologically active compounds in Neuro2a cells. Chem Res Toxicol. 2016;29:892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Korade Z, Kim HY, Tallman KA, Liu W, Koczok K, Balogh I, et al. The effect of small molecules on sterol homeostasis: measuring 7-dehydrocholesterol in DHCR7-deficient Neuro2a cells and human fibroblasts. J Med Chem. 2016;59:1102–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wages PA, Joshi P, Tallman KA, Kim HH, Bowman AB, Porter NA. Screening ToxCast for chemicals that affect cholesterol biosynthesis: studies in cell culture and human induced pluripotent stem cell-derived neuroprogenitors. Environ Health Perspect. 2020;128:17014.

    Article  PubMed  Google Scholar 

  46. Wages PA, Kim HH, Korade Z, Porter NA. Identification and characterization of prescription drugs that change levels of 7-dehydrocholesterol and desmosterol. J Lipid Res. 2018;59:1916–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Korade Z, Liu W, Warren EB, Armstrong K, Porter NA, Konradi C. Effect of psychotropic drug treatment on sterol metabolism. Schizophr Res. 2017;187:74–81.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Allen LB, Genaro-Mattos TC, Anderson A, Porter NA, Mirnics K, Korade Z. Amiodarone alters cholesterol biosynthesis through tissue-dependent inhibition of emopamil binding protein and dehydrocholesterol reductase 24. ACS Chem Neurosci. 2020;11:1413–23.

    Article  CAS  PubMed  Google Scholar 

  49. Allen LB, Mirnics K. Metoprolol inhibits developmental brain sterol biosynthesis in mice. Biomolecules. 2022;12:1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peeples ES, Mirnics K, Korade Z. Chemical inhibition of sterol biosynthesis. Biomolecules. 2024;14:410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health NICHD HD064727 (NAP), NIMH R01 MH110636 (KM, NAP), and R01 MH067234 (KM).

Author information

Authors and Affiliations

Authors

Contributions

ZK, KWG, NAP, KM - conceived the study, designed the experiments, interpreted data and wrote first draft of manuscript; KAT - synthesized all sterol and oxysterol standards and developed DMG method; AA - maintained mouse colony, cell cultures, and performed ImageXpress acquisition; ZK, HY-K, KS, KAT – performed LC-MS/MS analyses.

Corresponding author

Correspondence to Karoly Mirnics.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korade, Z., Anderson, A.C., Sharma, K. et al. Inhibition of post-lanosterol biosynthesis by fentanyl: potential implications for Fetal Fentanyl Syndrome (FFS). Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02622-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02622-5

Search

Quick links