TSMC's Next-Generation Chip Technology for Apple Silicon on Schedule

Apple chipmaker TSMC is making progress toward manufacturing 2nm and 1.4nm chips that are likely destined for future generations of Apple silicon, DigiTimes reports.

apple silicon feature joeblue
The manufacturing time frames for mass production of 2nm and 1.4nm chips have now apparently been determined: Trial production of the 2nm node will begin at in the second half of 2024, with small-scale production ramping up in the second quarter of 2025. Notably, TSMC's new plant in Arizona will also join 2nm production efforts. In 2027, facilities in Taiwan will start to shift toward production of 1.4nm chips.

TSMC's first 1.4nm node is officially called "A14" and will follow its "N2" 2nm chips. N2 is scheduled for mass production in late 2025, to be followed by an enhanced "N2P" node in late 2026.

Historically, Apple is among the first companies to adopt new, state-of-the-art chip fabrication technologies. For example, it was the first company to utilize TSMC's 3nm node with the A17 Pro chip in the iPhone 15 Pro and ‌iPhone 15 Pro‌ Max, and Apple is likely to follow suit with the chipmaker's upcoming nodes. Apple's most advanced chip designs have historically appeared in the iPhone before making their way to the iPad and Mac lineups. With all of the latest information, here's how the ‌iPhone‌'s chip technology is expected to look going forward:

  • ‌iPhone‌ XR and XS (2018): A12 Bionic (7nm, N7)
  • ‌iPhone‌ 11 lineup (2019): A13 Bionic (7nm, N7P)
  • ‌iPhone‌ 12 lineup (2020): A14 Bionic (5nm, N5)
  • iPhone 13 Pro (2021): A15 Bionic (5nm, N5P)
  • iPhone 14 Pro (2022): A16 Bionic (4nm, N4P)
  • ‌iPhone 15 Pro‌ (2023): A17 Pro (‌3nm‌, N3B)
  • iPhone 16 Pro (2024): "A18" (‌3nm‌, N3E)
  • "iPhone 17 Pro" (2025): "A19" (2nm, N2)
  • "‌iPhone‌ 18 Pro" (2026): "A20" (2nm, N2P)
  • "‌iPhone‌ 19 Pro" (2027): "A21" (1.4nm, A14)

The M1 series of Apple silicon chips is based on the A14 Bionic and uses TSMC's N5 node, while the M2 and M3 series use N5P and N3B, respectively. The Apple Watch's S4 and S5 chips use N7, the S6, S7, and S8 chips use N7P, and the latest S9 chip uses N4P.

Each successive TSMC node surpasses its predecessor in terms of transistor density, performance, and efficiency. Late last year, it emerged that TSMC had already demonstrated prototype 2nm chips to Apple ahead of their expected introduction in 2025.

Popular Stories

iPhone SE 4 Vertical Camera Feature

iPhone SE 4 Rumored to Use Same Rear Chassis as iPhone 16

Friday July 19, 2024 7:16 am PDT by
Apple will adopt the same rear chassis manufacturing process for the iPhone SE 4 that it is using for the upcoming standard iPhone 16, claims a new rumor coming out of China. According to the Weibo-based leaker "Fixed Focus Digital," the backplate manufacturing process for the iPhone SE 4 is "exactly the same" as the standard model in Apple's upcoming iPhone 16 lineup, which is expected to...
iPhone 17 Plus Feature

iPhone 17 Lineup Specs Detail Display Upgrade and New High-End Model

Monday July 22, 2024 4:33 am PDT by
Key details about the overall specifications of the iPhone 17 lineup have been shared by the leaker known as "Ice Universe," clarifying several important aspects of next year's devices. Reports in recent months have converged in agreement that Apple will discontinue the "Plus" iPhone model in 2025 while introducing an all-new iPhone 17 "Slim" model as an even more high-end option sitting...
iPhone 16 Pro Sizes Feature

iPhone 16 Series Is Just Two Months Away: Everything We Know

Monday July 15, 2024 4:44 am PDT by
Apple typically releases its new iPhone series around mid-September, which means we are about two months out from the launch of the iPhone 16. Like the iPhone 15 series, this year's lineup is expected to stick with four models – iPhone 16, iPhone 16 Plus, iPhone 16 Pro, and iPhone 16 Pro Max – although there are plenty of design differences and new features to take into account. To bring ...
Apple TV Plus Feature 2 Magenta and Blue

Apple TV+ Curbs Costs After Expensive Projects Fail to Capture Viewers

Monday July 22, 2024 5:11 am PDT by
Apple is scaling back its Hollywood spending after investing over $20 billion in original programming with limited success, Bloomberg reports. This shift comes after the streaming service, which launched in 2019, struggled to capture a significant share of the market, accounting for only 0.2% of TV viewership in the U.S., compared to Netflix's 8%. Despite heavy investment, critical acclaim,...
bsod

Microsoft Blames European Commission for Major Worldwide Outage

Monday July 22, 2024 11:55 am PDT by
Last Friday, a major CrowdStrike outage impacted PCs running Microsoft Windows, causing worldwide issues affecting airlines, retailers, banks, hospitals, rail networks, and more. Computers were stuck in continuous recovery loops, rendering them unusable. The failure was caused by an update to the CrowdStrike Falcon antivirus software that auto-installed on Windows 10 PCs, but Mac and Linux...

Top Rated Comments

vegetassj4 Avatar
15 weeks ago
If a speedometer measures speed, then a nanometer measures nan…. Grandmas? Flatbread?




https://dictionary.cambridge.org/us/dictionary/english/nan[Click to view video attachment]
Score: 8 Votes (Like | Disagree)
Anaxarxes Avatar
15 weeks ago

If I understood it correctly the "x nm" is just arbitrary and not an actual size? What comes after?


but for tech nodes, after nm we'll see Angstrom (100pm) as the unit
Score: 6 Votes (Like | Disagree)
AgeOfSpiracles Avatar
15 weeks ago

The whole thing is stupid... Angstroms (0.1 nm) follow, or picometres (0.001 nm). But since, as you say, the label is arbitrary they may as well call the next one 38.287 seconds. It all means nothing.
If MR included this caveat at the top of every article on the subject, do you suppose that people would still make this comment? Probably.
Score: 6 Votes (Like | Disagree)
Nimrad Avatar
15 weeks ago
If I understood it correctly the "x nm" is just arbitrary and not an actual size? What comes after?
Score: 4 Votes (Like | Disagree)
MayaUser Avatar
15 weeks ago

If I understood it correctly the "x nm" is just arbitrary and not an actual size? What comes after?
yes, its just marketing like M1 M2 M3...all words are invented. but that said it doesnt mean we will not get a lot more transistors , more efficient SoC or keep the same efficiency but go for pure performance only
From this M3 to the M7, we will see a big difference no matter the nm marketing
Score: 3 Votes (Like | Disagree)
bradman83 Avatar
15 weeks ago

If I understood it correctly the "x nm" is just arbitrary and not an actual size? What comes after?
Within the same company the labels provide a useful description of the miniaturization over the prior generation; the jump from 2nm from 3nm for TSMC's process would result in about a 33% increase in miniaturization and transistor density.

That said you are correct that it's all just marketing. Different processes from different companies have different transistor densities. Intel's 10nm process node is widely believed to be comparable to TSMC's 7nm node, for example (hence why Intel started calling their refreshed 10nm process as Intel 7).

The next marketing term is Angstrom; 10 Angstroms = 1 nanometer
Score: 3 Votes (Like | Disagree)