Intel Aggressively Dropping Power Consumption in Future Notebook Processors

intel2
During Intel's annual investor relations event earlier this week, Intel outlined a fundamental shift in its future processor designs that will likely impact Apple's future notebooks.

Until now, the bulk of Intel's notebook chips are design to draw around 35 watts of power--many of its notebook parts are lower, and some are higher, but 35 watts is the center point for Intel's portable lines. Going forward, however, the new center point will be in the 10 to 15 watt range.

Intel's future roadmap for notebook processors will now target a much lower power draw then present chips. That means ultra-low voltage processors like those found in the MacBook Air will become the norm instead of a specialty product.

mbathin
Intel seems to be clearly feeling the pressure of the growing smartphone and tablet market, According to the Financial Times, Otellini describes a future of PCs evolving into "higher performance mainstream-priced, touch-enabled device that would not compromise on features such as thinness, instant-on capabilities, permanent internet connectivity and all-day battery life." Apple's notebook line will certainly benefit from these advances.

Intel and Apple have had a close relationship since Apple switched over to Intel's processors several years ago. Apple has frequently been the first computer manufacturer to ship the latest Intel technologies. In a Reuters report yesterday, Intel said they work very closely with Apple and that Apple even influences their roadmap:

"We work very closely with them and we're constantly looking down the road at what we can be doing relative to future products. I'd go as far as to say Apple helps shape our roadmap," Kilroy said.

Popular Stories

iPhone SE 4 Vertical Camera Feature

iPhone SE 4 Rumored to Use Same Rear Chassis as iPhone 16

Friday July 19, 2024 7:16 am PDT by
Apple will adopt the same rear chassis manufacturing process for the iPhone SE 4 that it is using for the upcoming standard iPhone 16, claims a new rumor coming out of China. According to the Weibo-based leaker "Fixed Focus Digital," the backplate manufacturing process for the iPhone SE 4 is "exactly the same" as the standard model in Apple's upcoming iPhone 16 lineup, which is expected to...
iPhone 16 Pro Sizes Feature

iPhone 16 Series Is Just Two Months Away: Everything We Know

Monday July 15, 2024 4:44 am PDT by
Apple typically releases its new iPhone series around mid-September, which means we are about two months out from the launch of the iPhone 16. Like the iPhone 15 series, this year's lineup is expected to stick with four models – iPhone 16, iPhone 16 Plus, iPhone 16 Pro, and iPhone 16 Pro Max – although there are plenty of design differences and new features to take into account. To bring ...
bsod

Crowdstrike Says Global IT Outage Impacting Windows PCs, But Mac and Linux Hosts Not Affected

Friday July 19, 2024 3:12 am PDT by
A widespread system failure is currently affecting numerous Windows devices globally, causing critical boot failures across various industries, including banks, rail networks, airlines, retailers, broadcasters, healthcare, and many more sectors. The issue, manifesting as a Blue Screen of Death (BSOD), is preventing computers from starting up properly and forcing them into continuous recovery...
iphone 14 lineup

Cellebrite Unable to Unlock iPhones on iOS 17.4 or Later, Leak Reveals

Thursday July 18, 2024 4:18 am PDT by
Israel-based mobile forensics company Cellebrite is unable to unlock iPhones running iOS 17.4 or later, according to leaked documents verified by 404 Media. The documents provide a rare glimpse into the capabilities of the company's mobile forensics tools and highlight the ongoing security improvements in Apple's latest devices. The leaked "Cellebrite iOS Support Matrix" obtained by 404 Media...
Apple Watch Series 9

2024 Apple Watch Lineup: Key Changes We're Expecting

Tuesday July 16, 2024 7:59 am PDT by
Apple is seemingly planning a rework of the Apple Watch lineup for 2024, according to a range of reports from over the past year. Here's everything we know so far. Apple is expected to continue to offer three different Apple Watch models in five casing sizes, but the various display sizes will allegedly grow by up to 12% and the casings will get taller. Based on all of the latest rumors,...
tinypod apple watch

TinyPod Turns Your Apple Watch Into an iPod

Wednesday July 17, 2024 3:18 pm PDT by
If you have an old Apple Watch and you're not sure what to do with it, a new product called TinyPod might be the answer. Priced at $79, the TinyPod is a silicone case with a built-in scroll wheel that houses the Apple Watch chassis. When an Apple Watch is placed inside the TinyPod, the click wheel on the case is able to be used to scroll through the Apple Watch interface. The feature works...

Top Rated Comments

Hellhammer Avatar
172 months ago
Wattage ratings for CPUs are not power ratings but TDP ratings for OEMs to build appropriate cooling solutions.
They are all we got and pretty much all we need. Idle power usages have gone down every year but the TDP often affects the idle usage too. The TDP determines the suitability of a certain chip. While MBA could run a 130W when it's idling, the CPU would shut itself down when actually doing something since the cooling isn't appropriate.

As the mainstream CPUs are now 35W, that means you can't build a small, thin laptop and put one of those in it without heat issues. Clearly, Intel wants reduce the footprint of laptops and the only way they can do that is to produce more efficient CPUs with lower TDP.

Intel has their Xscale ARM before sold the whole division to Marvell few years ago, Intel doesn't make ARM cpu anymore.

My point was, Intel target power is 10-15 watts while ARM is less than 1 watts.

I'm sure ARM will not take over Intel in Desktop space anytime soon, but the opposite is still true. I still wonder who will won the next cpu war: slim down a fat architecture or beef up a slime design.
I remember reading an article about ARM vs Intel what stated that the possible issue with ARM is that power consumption and performance don't scale up evenly. ARM seems to work great in ~1W areas but its performance might be horrible when you start increasing the frequency and core count and thus the TDP (i.e. it does not scale up. E.g. you double the clock speed but your TDP becomes 10 times as big). Especially if the architecture is designed for 1W areas.
Score: 3 Votes (Like | Disagree)
toddybody Avatar
172 months ago
There will come a time (sooner than you think) when all that intensive work will *not* demand a so-called "higher-end" processor

Sorry, but this seems like a huge contradiction.

If there exists "intensive work", that is considered more processing intensive than other applications, wouldnt it then require a higher echelon of processors as opposed to less powerful solutions?

Are you saying that bottom end processors of the future will totally overkill the ever evolving complex and intensive applications of the time...seems like rubbish to me.

The only way your comment would be close to accurate, is if software development stands still. :rolleyes:
Score: 3 Votes (Like | Disagree)
Hellhammer Avatar
172 months ago
There will come a time (sooner than you think) when all that intensive work will *not* demand a so-called "higher-end" processor, or (and more likely), that those high-end processors will require a fraction of the power they require today. Looking it what the iPad 2 is capable of today, it's pretty astounding.
The power consumption has actually gone up. With Pentium 4s for instance, the maximum TDP was 115W and the CPUs we have now have maximum TDP of 130W. iPad is nothing else but a brick when it comes intensive tasks such as true video editing (i.e. more than cut&paste that you can do with iMovie) and 3D rendering.

You won't see high performance CPUs that require only a fraction of power anytime soon. There is, and will always be, a market for the fastest CPUs, even if it means more heat and higher power draw.

Could this "shift in design" partially reflect the "3D" re-architecture of transistors? Not to be naive in assuming that they will have their cake and eat it too...but I dont think this lower consumption will always result in performance below current LV/ULV chips.

Im hoping this will be a general evolution in efficiency (current performance at lower TDPs)
The Tri-Gate will transistors definitely help. I didn't mean that lowering the TDP would cause the CPUs to be slower than their predecessors ;) What it can cause, however, is that the performance upgrade will be smaller than what it would have been if the TDPs stayed the same.

Most likely, Intel's approach will take some time so this doesn't mean that Ivy Bridge mobile CPUs will all be 10-15W. Like I said, Intel will probably offer more lineup for different usages. High-performance laptops with higher TDP and then mainstream laptops with less CPU power but longer battery life etc. Quite similar to what we have now but might be that the TDPs of all CPUs will come down (e.g. 15W for mainstream, 25W performance etc).

remember the current 65 watts Quad Core CPU (similar to the ones in iMac) used to cost premium price than the 95watts last year compared to now
LV CPUs still cost a nice premium over the SV chips.
Score: 3 Votes (Like | Disagree)
Hellhammer Avatar
172 months ago
We will still see 35W and 45W mobile CPUs though. Reducing the power consumption means slower performance and not everyone is ready to sacrifice performance for better battery life and stuff. For an average user, even a 10W Atom is sufficient so widening the lineup of low-voltage CPU sounds reasonable.

To be honest, I wouldn't mind a low-power MBA with +10 hours of battery.
Score: 3 Votes (Like | Disagree)
toddybody Avatar
172 months ago
Fantastic News. Glad to see their roadmap is focused on such principles.

nVidia (Kepler, Maxwell) and AMD are also making incredible assertions about the GFLOPS/watt efficiencies in their next two generations of GPUs.

Even if battery tech increases slowly, the culmination of these things will mean some great products for us consumers :)
Score: 3 Votes (Like | Disagree)
Rodimus Prime Avatar
172 months ago
I've read about the ARM since it's first use in the Newton. and in my understanding, the ARM is a pure RISC design, a very small core built with efficiency in mind. They don't have branch prediction and deep execution pipe like x86 processor, limiting their effective power in desktop environment. It's like comparing a regular 3L V6 engine with a 1.6 turbo V4 running at 11,000 RPM, both could achieve about the same HP. But the V6 can be push more ahead burning fuel and the V4 will have better fuel efficiency at low speed. While ARM is already push to it's limit, core multiplication and expending the base design of ARM can obliterate those limit in near future.

The interesting part come from Intel, saying right now ARM mobile CPU is growing twice as fast as the Moore Law.

I could see why ARM would be going twice as fast as Moore for little while. My guess is because it only more recently been really developed and pushed so it is more or less playing catch up and using tricks and technology learned from the other CPU lines over the years. I am willing to bet it will slow down and drop to moore law speed after a while.

Really don't understand what you mean. Are you saying work will become less intensive, or processors will become faster+more-energy efficient? or are you saying software will become multi-threaded allowing it to leverage multiple energy-efficient cores to get performance, making it both fast and less energy?

He is just repeating Apple catch phases and his church of Apple worship.

I will tell you multithreading/multicore coding is hell to do in programming and a huge pain in the ass to get it all working correctly because so many more things can go wrong plus you have to make sure they are not trying to write or change the same set of data at the same time. Single threading is so much easier to code and design for than multi threading.
Score: 2 Votes (Like | Disagree)