Suhale Manzoor, Esq.

Suhale Manzoor, Esq.

Lebanon, Tennessee, United States
1K followers 500+ connections

About

I am an experienced technical leader, engineer, inventor, and attorney with over fifteen…

Articles by Suhale

See all articles

Activity

Join now to see all activity

Experience & Education

  • Firestone Industrial Products

View Suhale’s full experience

See their title, tenure and more.

or

By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.

Licenses & Certifications

Patents

  • Torsional vibration damper spoke design

    Issued US 10443700 B2

    Torsional vibration dampers (TVDs) having a plurality of spokes designed to withstand both torsional and bending forces and vibrations are disclosed. The spokes, which connect a central member to a peripheral rim, include a first end coupled to an outer radial surface of the central member; a second end coupled to an inner radial surface of the rim; and four concave surfaces extending between the first end and the second end. The concave surfaces may be concave from the first end to the second…

    Torsional vibration dampers (TVDs) having a plurality of spokes designed to withstand both torsional and bending forces and vibrations are disclosed. The spokes, which connect a central member to a peripheral rim, include a first end coupled to an outer radial surface of the central member; a second end coupled to an inner radial surface of the rim; and four concave surfaces extending between the first end and the second end. The concave surfaces may be concave from the first end to the second end and may also be concave laterally from front to back or side to side. A TVD having a hub with spokes having one or more concave surfaces is also disclosed herein. A method of designing the spokes for the hub is also disclosed.

    See patent
  • Radial vibration dampers having a tuning ratio and a tuning angle

    Issued US 10422409 B2

    Radial vibration dampers have an inertia member defining an annular channel having (i) a radially facing, open face; (ii) a bottom surface; and (iii) interior, opposing surfaces. The interior, opposing surfaces are each angled outward away from a central transverse plane through the inertia member at an angle in a range from zero degrees to at most 45 degrees. A spring damper member is seated in the annular channel to a selected depth that defines a damper gap between a radial inner surface of…

    Radial vibration dampers have an inertia member defining an annular channel having (i) a radially facing, open face; (ii) a bottom surface; and (iii) interior, opposing surfaces. The interior, opposing surfaces are each angled outward away from a central transverse plane through the inertia member at an angle in a range from zero degrees to at most 45 degrees. A spring damper member is seated in the annular channel to a selected depth that defines a damper gap between a radial inner surface of the spring damper member and the bottom surface of the annular channel and defines a clearance gap between the shaft and the inertia member. A tuning ratio of the clearance gap to the selected depth is in a range of about 1:1.5 to about 1:0.5.

    See patent
  • Torsional vibration dampers having a plurality of elastomeric ring bushings

    Issued US 10415684 B2

    Torsional vibration dampers are disclosed that have a hub defining a plurality of fastener-receiving openings and an inertia member concentric about and spaced a radial distance apart from a shaft-receiving member of the hub and having a plurality of receptacles defining a bore oriented axially. Each receptacle aligns with one of the plurality of fastener-receiving openings, and receives one of a plurality of elastomeric rings with a fastener seated therein and received in the…

    Torsional vibration dampers are disclosed that have a hub defining a plurality of fastener-receiving openings and an inertia member concentric about and spaced a radial distance apart from a shaft-receiving member of the hub and having a plurality of receptacles defining a bore oriented axially. Each receptacle aligns with one of the plurality of fastener-receiving openings, and receives one of a plurality of elastomeric rings with a fastener seated therein and received in the fastener-receiving openings to operatively connect the inertia member to the hub through compression of the elastomeric rings. The height of each elastomeric ring is greater than the axial width of the receptacles, and compression of the elastomeric rings deforms each radially into a first gap between the hub and the inertia member and a second gap between the inertia member and the fastener, thereby axially locking the inertia member to the hub for rotation together.

    See patent
  • Torsional vibration dampers having dual elastomeric members

    Issued US 10295015 B2

    Torsional vibration dampers are disclosed that include a monolithic body having an axis of rotation, an innermost annular wall defining a bore therethrough for receiving a shaft, and an outer annular wall concentric about the axis of rotation and spaced radially outward relative to the innermost annular wall, an inertia member concentric about the axis of rotation and positioned radially inward relative to the outer annual wall, the inertia member having an inner surface facing the axis of…

    Torsional vibration dampers are disclosed that include a monolithic body having an axis of rotation, an innermost annular wall defining a bore therethrough for receiving a shaft, and an outer annular wall concentric about the axis of rotation and spaced radially outward relative to the innermost annular wall, an inertia member concentric about the axis of rotation and positioned radially inward relative to the outer annual wall, the inertia member having an inner surface facing the axis of rotation and an outer surface facing the outermost annular wall, a first elastomer member seated against the inner surface of the inertia member, and a second elastomer member seated against the outer surface of the inertia member and in between the inertia member and the outer annular wall. The first and second elastomer members operably couple the inertia member to the monolithic body for rotation therewith.

    See patent
  • Low frequency torsional vibration damper

    Issued US 10208831 B2

    Torsional vibration dampers are disclosed that include a hub and an inertia member disposed concentric with and spaced radially outward or radially inward from the hub that together define a plurality of pockets therebetween each having a spool-shaped receptacle. A plurality of spool-shaped elastomeric plugs, one each, are seated in the spool-shaped receptacles. When the inertia member is spaced radially outward of the hub, the hub is mountable on a shaft, and when the inertia member is spaced…

    Torsional vibration dampers are disclosed that include a hub and an inertia member disposed concentric with and spaced radially outward or radially inward from the hub that together define a plurality of pockets therebetween each having a spool-shaped receptacle. A plurality of spool-shaped elastomeric plugs, one each, are seated in the spool-shaped receptacles. When the inertia member is spaced radially outward of the hub, the hub is mountable on a shaft, and when the inertia member is spaced radially inward of the hub, the hub is mountable inside a shaft. Methods of making the torsional vibration dampers are also disclosed.

    See patent
  • Apparatus for a drive system having a cartridge housing one or more elastomer members

    Issued US 10190654 B2

    Torsional vibration dampers for FEADs are disclosed that include a hub having a sleeve defining a bore for receiving a shaft and an outer annular ring spaced radially outward from the sleeve, thereby defining an annular receptacle, a component for rotation with the hub having an inner annular ring disposed between the sleeve and the outer annular ring of the hub, and an annular cartridge seated in the annular receptacle between the inner annular ring of the component for rotation with the hub…

    Torsional vibration dampers for FEADs are disclosed that include a hub having a sleeve defining a bore for receiving a shaft and an outer annular ring spaced radially outward from the sleeve, thereby defining an annular receptacle, a component for rotation with the hub having an inner annular ring disposed between the sleeve and the outer annular ring of the hub, and an annular cartridge seated in the annular receptacle between the inner annular ring of the component for rotation with the hub and the sleeve or outer annular ring of the hub. The annular cartridge defines a first annular groove having a generally C-shaped or U-shaped cross-sectional profile open radially outward, and has a first elastomer member seated therein in compression, thereby operatively coupling the component for rotation with the hub to the hub. The component may be a pulley body or an inertia member.

    See patent
  • Torsional vibration dampers

    Issued US 10151379 B2

    Torsional vibration dampers are disclosed that have a hub having a plate extending radially outward about a shaft-receiving member, a first portion of an inertia member defining a back face and a bore therethrough and having an annular flange concentric about the axis of rotation, a first elastomeric member and a second elastomeric member positioned against opposite sides of the plate, and a second portion of the inertia member fastened to the first portion of the inertia member by one or more…

    Torsional vibration dampers are disclosed that have a hub having a plate extending radially outward about a shaft-receiving member, a first portion of an inertia member defining a back face and a bore therethrough and having an annular flange concentric about the axis of rotation, a first elastomeric member and a second elastomeric member positioned against opposite sides of the plate, and a second portion of the inertia member fastened to the first portion of the inertia member by one or more fasteners, thereby placing the first and second elastomeric members in compression. The shaft-receiving member of the hub is positioned in the bore with the plate of the hub spaced a distance from an interior surface of the annular flange, and the plate of the hub and the interior surfaces of each of the first and second portions of the inertia member facing the plate define dual common vertices.

    See patent
  • Torsional Vibration Damper with an Interlocked Isolator

    Issued US 10030757 B2

    A crankshaft damper-isolator that includes a hub having an outer radial surface and an outermost radial surface spaced radially outward from the outer radial surface and thereby defining an annular receptacle therebetween, a pulley body having a belt engaging portion radially-concentric about the hub and a face guard that terminates in a central bore seated about the outer radial surface of the hub, a damper assembly disposed between the outermost radial surface of the hub and belt engaging…

    A crankshaft damper-isolator that includes a hub having an outer radial surface and an outermost radial surface spaced radially outward from the outer radial surface and thereby defining an annular receptacle therebetween, a pulley body having a belt engaging portion radially-concentric about the hub and a face guard that terminates in a central bore seated about the outer radial surface of the hub, a damper assembly disposed between the outermost radial surface of the hub and belt engaging portion of the pulley body, a back plate fastened to the hub, a first elastomeric isolator member encapsulated and interlocked in compression between the annular receptacle of the hub and a front face of the face guard of the pulley body, and a second elastomeric isolator member encapsulated and interlocked in compression between the back plate and a back face of the face guard of the pulley body.

    See patent
  • Two-part Hub for a Torsional Vibration Damper and Method of Making the Same

    Issued US 9982746 B2

    Two-part hubs for torsional vibration dampers are disclosed that have a main body made of a softer material than a seal nose and do not require a welded joint to join them together. The main body has a plate defining a front face and a back face, an annular core extending axially outward from the back face of the plate and defining an innermost, outer radial surface and a first bore through the main body, and an outermost, radial, elastomer-receiving surface spaced apart from the innermost…

    Two-part hubs for torsional vibration dampers are disclosed that have a main body made of a softer material than a seal nose and do not require a welded joint to join them together. The main body has a plate defining a front face and a back face, an annular core extending axially outward from the back face of the plate and defining an innermost, outer radial surface and a first bore through the main body, and an outermost, radial, elastomer-receiving surface spaced apart from the innermost outer radial surface by the plate. The seal nose is mated to the innermost, outer radial surface of the annular core and mechanically engaged with the main body for rotation together. Torsional vibration dampers that include the two-part hubs are also disclosed, as well as a front end accessory drive including the same, and methods of manufacturing the two-part hubs.

    See patent
  • Elastomer Strip Design for Torsional Vibration Dampers and Torsional Vibration Dampers Having the Same

    Issued US 9945439 B2

    Elastomer members for a torsional vibration damper, methods of making the same, and torsional vibration dampers having the elastomer members are disclosed. The elastomer members have a first major surface and an opposing second major surface with opposing side joining the first major surface to the second major surface, have a median sagittal plane extending parallel to the first major surface and the second major surface, and a transverse plane perpendicular to the median sagittal plane. In a…

    Elastomer members for a torsional vibration damper, methods of making the same, and torsional vibration dampers having the elastomer members are disclosed. The elastomer members have a first major surface and an opposing second major surface with opposing side joining the first major surface to the second major surface, have a median sagittal plane extending parallel to the first major surface and the second major surface, and a transverse plane perpendicular to the median sagittal plane. In a cross-sectional geometry in a plane bisecting the median sagittal plane and the transverse plane, a thickness of the elastomer member changes along the median sagittal plane in a direction parallel to the transverse plane with a first thickness at both opposing sides and a second thickness at the transverse plane, where the second thickness is greater than the first thicknesses.

    See patent
  • Damper Isolator with Magnetic Springs

    Issued US 9702432 B2

    Damper-isolators are disclosed that have a hub defining a bore for receiving a shaft, a pulley body mated to the hub to collectively define a magnet track that is concentric about the bore, a damper assembly operatively disposed between the hub and a belt engaging portion of the pulley body, a first magnet positioned within the magnet track and connected to the hub for rotation therewith, and a second magnet positioned within the magnet track and connected to the pulley body for rotation…

    Damper-isolators are disclosed that have a hub defining a bore for receiving a shaft, a pulley body mated to the hub to collectively define a magnet track that is concentric about the bore, a damper assembly operatively disposed between the hub and a belt engaging portion of the pulley body, a first magnet positioned within the magnet track and connected to the hub for rotation therewith, and a second magnet positioned within the magnet track and connected to the pulley body for rotation therewith. The first magnet and the second magnet are positioned with like polarities facing one another. A front end accessory drive system having one of the damper-isolators is also disclosed.

    See patent
  • Torsional Vibration Dampers

    Issued US 9599209 B2

    Torsional vibration dampers having a hub integral with a pulley body for rotation therewith and at least an annular first elastomeric member seated on the pulley body between the outer belt engaging surface and the hub and held thereagainst for rotation therewith by a first inertia ring connected to the pulley body are disclosed. The torsional vibration dampers may also include an annular second elastomeric member seated on the pulley body, on a side opposite the annular first elastomeric…

    Torsional vibration dampers having a hub integral with a pulley body for rotation therewith and at least an annular first elastomeric member seated on the pulley body between the outer belt engaging surface and the hub and held thereagainst for rotation therewith by a first inertia ring connected to the pulley body are disclosed. The torsional vibration dampers may also include an annular second elastomeric member seated on the pulley body, on a side opposite the annular first elastomeric member, between the outer belt engaging surface and the hub and held thereagainst for rotation therewith by a second inertia ring connected to the pulley body or seated on the first inertia member, on a side opposite the first elastomeric member, between the first inertia member and a front end cap, where the front end cap compresses the second elastomeric member against the first inertia member.

    See patent
  • Torsional Vibration Damper with an Interlocked Isolator

    Issued US 9581233 B2

    Torsional vibration dampers having isolator members (crankshaft damper-isolators) are disclosed that include a hub defining an annular receptacle, a pulley body having a belt engaging surface, a damper assembly disposed between an outermost radial surface of the hub and the pulley body, an isolator member seated in the annular receptacle of the hub, and a slide bearing disposed between an outer radial surface of the hub and the sleeve of the pulley body. The isolator member is engaged with both…

    Torsional vibration dampers having isolator members (crankshaft damper-isolators) are disclosed that include a hub defining an annular receptacle, a pulley body having a belt engaging surface, a damper assembly disposed between an outermost radial surface of the hub and the pulley body, an isolator member seated in the annular receptacle of the hub, and a slide bearing disposed between an outer radial surface of the hub and the sleeve of the pulley body. The isolator member is engaged with both the hub and the pulley body for rotation therewith when the hub and pulley body rotate at the same speed and when the hub rotates relative to the pulley body. The isolator member may be an elastomeric isolator or a torsion spring isolator. The slide bearing axially retains the pulley body to the hub and allows the pulley body to rotate relative to the hub.

    See patent
  • Torsional Vibration Damper

    Issued US 9506523 B2

    A torsional vibration damper is disclosed. The torsional vibration damper comprises a first member having a radially outer surface that comprises a central concave section axially between convex sections and a second member having a radially inner surface that comprises a central convex section axially between concave sections and that opposes said radially outer surface. The radially outer surface and said radially inner surface are separated by a radial gap that defines a cross-sectional…

    A torsional vibration damper is disclosed. The torsional vibration damper comprises a first member having a radially outer surface that comprises a central concave section axially between convex sections and a second member having a radially inner surface that comprises a central convex section axially between concave sections and that opposes said radially outer surface. The radially outer surface and said radially inner surface are separated by a radial gap that defines a cross-sectional profile having an axial center and axial ends, and wherein said radial gap increases in thickness from said axial center to each said axial end of said cross-sectional profile. Alternatively, the first member may include a central convex section axially between concave sections and the second member may include a central concave section between convex section.

    See patent
  • Radial Vibration Dampers for Rotating Shafts

    Issued US 9410597 B2

    Radial vibration dampers (RVD's) press-fittable to a shaft and shaft systems incorporating RVD's are disclosed herein. The RVD's include a first inertia member and a second inertia member fixedly connected to one another to define an annular channel having a radially facing, open side and a spring damper material seated in the annular chamber and axially compressed between the two inertia members. The spring damper material has a compressible portion protruding from the radially facing, open…

    Radial vibration dampers (RVD's) press-fittable to a shaft and shaft systems incorporating RVD's are disclosed herein. The RVD's include a first inertia member and a second inertia member fixedly connected to one another to define an annular channel having a radially facing, open side and a spring damper material seated in the annular chamber and axially compressed between the two inertia members. The spring damper material has a compressible portion protruding from the radially facing, open side so that, when the compressible portion is compressed against a shaft, the spring damper material defines a gap between the shaft and the inertia members. The RVD may be press-fittable inside a hollow shaft or to the outside of a hollow or solid shaft. The RVD's disclosed herein have first vibration mode shapes that are radial in nature and decoupled from latter vibration modes.

    See patent
  • Material Compensation Joint and Radial Vibration Damper having the same

    Issued US 9322453 B2

    Mating components that are mateable to another component to share the same axis of rotation, assemblies including the mating component mated to another component, and methods of mating them together are disclosed. The mating component includes a hub having an engaging portion defining an endless channel recessed therein. The endless channel has a surface that defines one or more trenches therein and an elastomeric band seated against that surface in an uncompressed state. The elastomeric band…

    Mating components that are mateable to another component to share the same axis of rotation, assemblies including the mating component mated to another component, and methods of mating them together are disclosed. The mating component includes a hub having an engaging portion defining an endless channel recessed therein. The endless channel has a surface that defines one or more trenches therein and an elastomeric band seated against that surface in an uncompressed state. The elastomeric band has an outermost dimension relative to the endless channel that is larger than the inner or outer dimension defined by the engaging portion of the hub and thereby defines an unchanneled portion of the elastomeric band, which has a volume that is equal to or less than the total volume of the one or more trenches.

    See patent
  • Torsional Vibration Damper with Non-uniform Elastomer Profile

    Issued US 9121471 B2

    A Torsional Vibration Damper includes a hub, a ring, and a rubber member that is compression fitted between the outer surface of the hub and the inner surface of the ring. The cross-sectional profile of the outer surface of the hub and the inner surface of the ring after the assembly of the TVD consists of two concave or convex arcs with their radii such that the cross-sectional profile's gap increases from the center to the sides. This variation of the cross-sectional profile's gap reduces the…

    A Torsional Vibration Damper includes a hub, a ring, and a rubber member that is compression fitted between the outer surface of the hub and the inner surface of the ring. The cross-sectional profile of the outer surface of the hub and the inner surface of the ring after the assembly of the TVD consists of two concave or convex arcs with their radii such that the cross-sectional profile's gap increases from the center to the sides. This variation of the cross-sectional profile's gap reduces the principal-strain buildup in the rubber, thereby improving the life of the Torsional Vibration Damper. This design also facilitates proper assembly as the components are self aligning.

    See patent
  • Recessed Belt Damper (Driveline Applications)

    Issued US 8,973,463 B2

    A torsional vibration damper includes an inertia mass and a rotating shaft or hub with an elastomeric ring between the inertia mass and the rotating shaft or hub. A large portion of said elastomeric member is located in a channel located either in the inertia mass or in the hub. This allows one to achieve high contact pressure without creating a significant fatigue on the elastomeric member. This can be used with either a crankshaft damper or an internal or external drive shaft damper.

    See patent
  • Compressed Hub Damper

    Issued US 8,397,602 B2

    A torsional vibration damper includes front and rear hub members with an inertia mass between the two hub members. Annular elastomeric rings are positioned between the front and rear hub members and the inertia mass holding the inertia mass. Fasteners extend through the front hub member, the inertia mass, and fixed to the rear hub member. A clearance between the fastener and the inertia mass allows relative motion to absorb torsional vibration.

    See patent
  • Recessed Belt Damper (Crankshaft Applications)

    Issued US 8,342,058 B2

    A torsional vibration damper includes an inertia mass and a rotating shaft or hub with an elastomeric ring between the inertia mass and the rotating shaft or hub. A large portion of said elastomeric member is located in a channel located either in the inertia mass or in the hub. This allows one to achieve high contact pressure without creating a significant fatigue on the elastomeric member. This can be used with either a crankshaft damper or an internal or external drive shaft damper.

    See patent
  • Decoupled Vibration Damper

    Issued US 8,177,943 B2

    A torsional vibration damper includes a one-piece integral hub and annular inertia mass assembly. Between the hub and the inertia mass are intermediate rings connected integrally with the mass and the hub connected integral spokes. Elastomeric members are compression fitted within spaces formed between the hub and the mass.

    See patent
  • Decoupled Vibration Damper

    Issued US 8,091,450 B2

    A torsional vibration damper includes a one-piece integral hub and annular inertia mass assembly. Between the hub and the inertia mass are intermediate rings connected integrally with the mass and the hub connected integral spokes. Elastomeric members are compression fitted within spaces formed between the hub and the mass. With this design, the damper can be formed from a polymeric material with an embedded annular weight.

    See patent
  • Torsional Vibration Damper (Dual Action Tuned Absorber or DATA)

    Issued US 7,905,159 B2

    A torsional vibration damper having a hub carrying a radially projecting flange and an annular inertia mass defining an annular channel encompassing the radially projecting flange and an elastomeric member. An annular compression ring is attached to the opening of the annular channel to axially compress and extrude the elastomeric member to fill the annular channel around the radial flange within the inertia ring. Projections defining an intermittent annular inner rim of the inertia mass extend…

    A torsional vibration damper having a hub carrying a radially projecting flange and an annular inertia mass defining an annular channel encompassing the radially projecting flange and an elastomeric member. An annular compression ring is attached to the opening of the annular channel to axially compress and extrude the elastomeric member to fill the annular channel around the radial flange within the inertia ring. Projections defining an intermittent annular inner rim of the inertia mass extend through openings between the spokes of the hub and cooperate with an annular outer rim of the inertia mass to retain the compression ring.

    See patent

Languages

  • English

    Native or bilingual proficiency

  • Hindi

    Native or bilingual proficiency

  • Urdu

    Limited working proficiency

  • Oriya

    Limited working proficiency

  • German

    Elementary proficiency

Recommendations received

More activity by Suhale

View Suhale’s full profile

  • See who you know in common
  • Get introduced
  • Contact Suhale directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Add new skills with these courses