Stefano Gullà

Boston, Massachusetts, United States Contact Info
3K followers 500+ connections

Join to view profile

About

Goal-oriented biotech and pharma program leader and innovator with demonstrated success…

Activity

Join now to see all activity

Experience

  • Kling Biotherapeutics

Education

  • Massachusetts Institute of Technology

Publications

  • Designed BH3 Peptides with High Affinity and Specificity for Targeting Mcl-1 in Cells

    ACS Chemical Biology

    Mcl-1 is overexpressed in many cancers and can confer resistance to cell-death signaling in refractory disease. Molecules that specifically inhibit Mcl-1 hold potential for diagnosing and disrupting Mcl-1-dependent cell survival. We selected three peptides from a yeast-surface display library that showed moderate specificity and affinity for binding to Mcl-1 over Bfl-1, Bcl-xL, Bcl-2, and Bcl-w. Specificity for Mcl-1 was improved by introducing threonine at peptide position 2e. The most…

    Mcl-1 is overexpressed in many cancers and can confer resistance to cell-death signaling in refractory disease. Molecules that specifically inhibit Mcl-1 hold potential for diagnosing and disrupting Mcl-1-dependent cell survival. We selected three peptides from a yeast-surface display library that showed moderate specificity and affinity for binding to Mcl-1 over Bfl-1, Bcl-xL, Bcl-2, and Bcl-w. Specificity for Mcl-1 was improved by introducing threonine at peptide position 2e. The most specific peptide, MS1, bound Mcl-1 with 40-fold or greater specificity over four other human Bcl-2 paralogs. In BH3 profiling assays, MS1 caused depolarization in several human Mcl-1-dependent cell lines with EC50 values of 3 μM, contrasted with EC50 values of >100 μM for Bcl-2-, Bcl-xL-, or Bfl-1-dependent cell lines. MS1 is at least 30-fold more potent in this assay than the previously used Mcl-1 targeting reagent NoxaA BH3. These peptides can be used to detect Mcl-1 dependency in cells and provide leads for developing Mcl-1 targeting therapeutics.

    Other authors
    See publication
  • In silico and in vitro elucidation of BH3 binding specificity toward Bcl-2

    Biochemistry

    Interactions between Bcl-2 like proteins and BH3 domains play a key role in the regulation of apoptosis. Despite the overall structural similarity of their interaction with helical BH3 domains, Bcl-2 like proteins exhibit an intricate spectrum of binding specificities whose underlying basis is not well understood. Here, we characterize these interactions using Rosetta FlexPepBind, a protocol for the prediction of peptide binding specificity that evaluates the binding potential of different…

    Interactions between Bcl-2 like proteins and BH3 domains play a key role in the regulation of apoptosis. Despite the overall structural similarity of their interaction with helical BH3 domains, Bcl-2 like proteins exhibit an intricate spectrum of binding specificities whose underlying basis is not well understood. Here, we characterize these interactions using Rosetta FlexPepBind, a protocol for the prediction of peptide binding specificity that evaluates the binding potential of different peptides based on structural models of the corresponding peptide-receptor complexes. For two prominent players, Bcl-xL and Mcl-1, we obtain good agreement with a large set of experimental SPOT array measurements and recapitulate the binding specificity of peptides derived by yeast display in a previous study. We extend our approach to a third member of this family, Bcl-2: we test our blind prediction of the binding of 180 BIM-derived peptides with a corresponding experimental SPOT array. Both prediction and experiment reveal a Bcl-2 binding specificity pattern that resembles that of Bcl-xL. Finally, we extend this application to accurately predict the specificity pattern of additional human BH3-only derived peptides. This study characterizes the distinct patterns of binding specificity of BH3-only derived peptides for the Bcl-2 like proteins Bcl-xL, Mcl-1 and Bcl-2, and provides insight into the structural basis of determinants of specificity.

    See publication
  • Synthesis of a spin-labeled anti-estrogen as a dynamic motion probe for the estrogen receptor ligand binding domain

    The preparation and characterization of a novel nitroxide spin probe based on a steroidal anti-estrogen is described. The probe 5 demonstrated very high binding affinity for both the alpha and beta isoforms of the estrogen receptor-ligand binding domain. EPR spectrometric studies demonstrate conformational constraints for the ligand, consistent with the nitroxyl moiety occupying a position just beyond the receptor-solvent interface.

    See publication
  • Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL

    Interactions among Bcl-2 family proteins are important for regulating apoptosis. Prosurvival members of the family interact with proapoptotic BH3 (Bcl-2-homology-3)-only members, inhibiting execution of cell death through the mitochondrial pathway. Structurally, this interaction is mediated by binding of the alpha-helical BH3 region of the proapoptotic proteins to a conserved hydrophobic groove on the prosurvival proteins. Native BH3-only proteins exhibit selectivity in binding prosurvival…

    Interactions among Bcl-2 family proteins are important for regulating apoptosis. Prosurvival members of the family interact with proapoptotic BH3 (Bcl-2-homology-3)-only members, inhibiting execution of cell death through the mitochondrial pathway. Structurally, this interaction is mediated by binding of the alpha-helical BH3 region of the proapoptotic proteins to a conserved hydrophobic groove on the prosurvival proteins. Native BH3-only proteins exhibit selectivity in binding prosurvival members, as do small molecules that block these interactions. Understanding the sequence and structural basis of interaction specificity in this family is important, as it may allow the prediction of new Bcl-2 family associations and/or the design of new classes of selective inhibitors to serve as reagents or therapeutics. In this work, we used two complementary techniques--yeast surface display screening from combinatorial peptide libraries and SPOT peptide array analysis--to elucidate specificity determinants for binding to Bcl-x(L)versus Mcl-1, two prominent prosurvival proteins. We screened a randomized library and identified BH3 peptides that bound to either Mcl-1 or Bcl-x(L) selectively or to both with high affinity. The peptides competed with native ligands for binding into the conserved hydrophobic groove, as illustrated in detail by a crystal structure of a specific peptide bound to Mcl-1. Mcl-1-selective peptides from the screen were highly specific for binding Mcl-1 in preference to Bcl-x(L), Bcl-2, Bcl-w, and Bfl-1, whereas Bcl-x(L)-selective peptides showed some cross-interaction with related proteins Bcl-2 and Bcl-w. Mutational analyses using SPOT arrays revealed the effects of 170 point mutations made in the background of a peptide derived from the BH3 region of Bim, and a simple predictive model constructed using these data explained much of the specificity observed in our Mcl-1 versus Bcl-x(L) binders.

    See publication
  • Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes

    Mcl-1 is an antiapoptotic Bcl-2-family protein that protects cells against death. Structures of Mcl-1, and of other anti-apoptotic Bcl-2 proteins, reveal a surface groove into which the alpha-helical BH3 regions of certain proapoptotic proteins can bind. Despite high overall structural conservation, differences in this groove afford binding specificity that is important for the mechanism of Bcl-2 family function. We report the crystal structure of human Mcl-1 bound to a BH3 peptide derived from…

    Mcl-1 is an antiapoptotic Bcl-2-family protein that protects cells against death. Structures of Mcl-1, and of other anti-apoptotic Bcl-2 proteins, reveal a surface groove into which the alpha-helical BH3 regions of certain proapoptotic proteins can bind. Despite high overall structural conservation, differences in this groove afford binding specificity that is important for the mechanism of Bcl-2 family function. We report the crystal structure of human Mcl-1 bound to a BH3 peptide derived from human Bim and the structures for three complexes that accommodate large physicochemical changes at conserved Bim sites. The mutations had surprisingly modest effects on complex stability, and the structures show that Mcl-1 can undergo small changes to accommodate the mutant ligands. For example, a shift in a leucine side chain fills a hole left by an isoleucine-to-alanine mutation at the first hydrophobic buried position of Bim BH3. Larger changes are also observed, with shifting of helix alpha3 accommodating an isoleucine-to-tyrosine mutation at this same position. We surveyed the variation in available Mcl-1 and Bcl-x(L) structures and observed moderate flexibility that is likely critical for facilitating interactions of diverse BH3-only proteins with Mcl-1. With the antiapoptotic Bcl-2 family members attracting significant attention as therapeutic targets, these structures contribute to our growing understanding of how specificity is achieved and can help to guide the design of novel inhibitors that target Mcl-1.

    See publication
  • Molecular-scale force measurement in a coiled-coil peptide dimer by electron spin resonance

    A new method for measuring forces between small protein domains based on double electron-electron resonance (DEER) spectroscopy is demonstrated using a model peptide derived from the alpha-helical coiled-coil leucine zipper of yeast transcriptional activator GCN4. The equilibrium distribution of distances between two nitroxide spin labels rigidly attached to the helices of the dimer was determined by DEER and yielded a closing force of 100 +/- 10 pN between monomers, in excellent agreement with…

    A new method for measuring forces between small protein domains based on double electron-electron resonance (DEER) spectroscopy is demonstrated using a model peptide derived from the alpha-helical coiled-coil leucine zipper of yeast transcriptional activator GCN4. The equilibrium distribution of distances between two nitroxide spin labels rigidly attached to the helices of the dimer was determined by DEER and yielded a closing force of 100 +/- 10 pN between monomers, in excellent agreement with theoretical predictions.

    See publication

Patents

Languages

  • Italian

    Native or bilingual proficiency

More activity by Stefano

View Stefano’s full profile

  • See who you know in common
  • Get introduced
  • Contact Stefano directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Stefano Gullà

Add new skills with these courses