Craig Mermel

San Francisco Bay Area Contact Info
2K followers 500+ connections

Join to view profile

Activity

Join now to see all activity

Experience & Education

  • Precision Neuroscience

View Craig’s full experience

See their title, tenure and more.

or

By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.

Publications

  • The 2013 symposium on pathology data integration and clinical decision support and the current state of field.

    Journal of pathology informatics

    Pathologists and informaticians are becoming increasingly interested in electronic clinical decision support for pathology, laboratory medicine and clinical diagnosis. Improved decision support may optimize laboratory test selection, improve test result interpretation and permit the extraction of enhanced diagnostic information from existing laboratory data. Nonetheless, the field of pathology decision support is still developing. To facilitate the exchange of ideas and preliminary studies, we…

    Pathologists and informaticians are becoming increasingly interested in electronic clinical decision support for pathology, laboratory medicine and clinical diagnosis. Improved decision support may optimize laboratory test selection, improve test result interpretation and permit the extraction of enhanced diagnostic information from existing laboratory data. Nonetheless, the field of pathology decision support is still developing. To facilitate the exchange of ideas and preliminary studies, we convened a symposium entitled: Pathology data integration and clinical decision support.

    See publication
  • microRNA Expression during Trophectoderm Specification

    PLOS One

    Abstract
    Background
    Segregation of the trophectoderm from the inner cell mass of the embryo represents the first cell-fate decision of mammalian development. Transcription factors essential for specifying trophectoderm have been identified, but the role of microRNAs (miRNAs) in modulating this fate-choice has been largely unexplored. We have compared miRNA expression in embryonic stem cell (ESC)-derived trophectoderm and in staged murine embryos to identify a set of candidate miRNAs…

    Abstract
    Background
    Segregation of the trophectoderm from the inner cell mass of the embryo represents the first cell-fate decision of mammalian development. Transcription factors essential for specifying trophectoderm have been identified, but the role of microRNAs (miRNAs) in modulating this fate-choice has been largely unexplored. We have compared miRNA expression in embryonic stem cell (ESC)-derived trophectoderm and in staged murine embryos to identify a set of candidate miRNAs likely to be involved in trophectoderm specification.


    Results
    We profiled embryonic stem cells (ESCs) as they were induced to differentiate into trophectodermal cells by ectopic expression of HRas/Q61L. We also profiled murine embryos at progressive stages of preimplantation development (zygote, 2-cell, 4-cell, 8-cell, morula, and blastocyst), which includes the time window in which the trophectoderm is specified in vivo. Q61L/H


    Conclusions
    We describe miRNA expression changes that occur during trophectoderm specification and validate that our in vitro system faithfully recapitulates trophectoderm specification in vivo. By comparing our in vitro and in vivo datasets, we have identified a minimal set of candidate miRNAs likely to play a role in trophectoderm specification. These miRNAs are predicted to regulate a host of development-associated target genes, and many of these miRNAs have previously reported roles in development and differentiation. Additionally, we highlight a number of miRNAs whose tight developmental regulation may reflect a functional role in other stages of embryogenesis. Our embryo profiling data may be useful to investigators studying trophectoderm specification and other stages of preimplantation development.

    See publication

More activity by Craig

View Craig’s full profile

  • See who you know in common
  • Get introduced
  • Contact Craig directly
Join to view full profile

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Add new skills with these courses