Cameron Pye

Santa Cruz, California, United States Contact Info
3K followers 500+ connections

Join to view profile

About

Specialties: Chemoinformatics, Solid Phase Peptide Synthesis, Synthetic and Analytic…

Activity

Join now to see all activity

Experience & Education

  • Unnatural Products

View Cameron’s full experience

See their title, tenure and more.

or

By clicking Continue to join or sign in, you agree to LinkedIn’s User Agreement, Privacy Policy, and Cookie Policy.

Publications

  • CycLS: Accurate, whole-library sequencing of cyclic peptides using tandem mass spectrometry

    Bioorganic & Medicinal Chemistry

    Cyclic peptides are of great interest as therapeutic compounds due to their potential for specificity and intracellular activity, but specific compounds can be difficult to identify from large libraries without resorting to molecular encoding techniques. Large libraries of cyclic peptides are often DNA-encoded or linearized before sequencing, but both of those deconvolution strategies constrain the chemistry, assays, and quantification methods which can be used. We developed an automated…

    Cyclic peptides are of great interest as therapeutic compounds due to their potential for specificity and intracellular activity, but specific compounds can be difficult to identify from large libraries without resorting to molecular encoding techniques. Large libraries of cyclic peptides are often DNA-encoded or linearized before sequencing, but both of those deconvolution strategies constrain the chemistry, assays, and quantification methods which can be used. We developed an automated sequencing program, CycLS, to identify cyclic peptides contained within large synthetic libraries. CycLS facilitates quick and easy identification of all library-members via tandem mass spectrometry data without requiring any specific chemical moieties or modifications within the library. Validation of CycLS against a library of 400 cyclic hexa-peptide peptoid hybrids (peptomers) of unique mass yielded a result of 95% accuracy when compared against a simulated library size of 234,256 compounds. CycLS was also evaluated by resynthesizing pure compounds from a separate 1800-member library of cyclic hexapeptides and hexapeptomers with high mass redundancy. Of 22 peptides resynthesized, 17 recapitulated the retention times assigned to them from the whole-library bulk assay results. Implementing a database-matching approach, CycLS is fast and provides a robust method for sequencing cyclic peptides that is particularly applicable to the deconvolution of synthetic libraries.

    Other authors
    • Chad Townsend
    See publication
  • Retrospective analysis of natural products provides insights for future discovery trends

    Proceedings of the National Academy of Sciences

    Understanding of the capacity of the natural world to produce secondary metabolites is important to a broad range of fields, including drug discovery, ecology, biosynthesis, and chemical biology, among others. Both the absolute number and the rate of discovery of natural products have increased significantly in recent years. However, there is a perception and concern that the fundamental novelty of these discoveries is decreasing relative to previously known natural products. This study…

    Understanding of the capacity of the natural world to produce secondary metabolites is important to a broad range of fields, including drug discovery, ecology, biosynthesis, and chemical biology, among others. Both the absolute number and the rate of discovery of natural products have increased significantly in recent years. However, there is a perception and concern that the fundamental novelty of these discoveries is decreasing relative to previously known natural products. This study presents a quantitative examination of the field from the perspective of both number of compounds and compound novelty using a dataset of all published microbial and marine-derived natural products. This analysis aimed to explore a number of key questions, such as how the rate of discovery of new natural products has changed over the past decades, how the average natural product structural novelty has changed as a function of time, whether exploring novel taxonomic space affords an advantage in terms of novel compound discovery, and whether it is possible to estimate how close we are to having described all of the chemical space covered by natural products. Our analyses demonstrate that most natural products being published today bear structural similarity to previously published compounds, and that the range of scaffolds readily accessible from nature is limited. However, the analysis also shows that the field continues to discover appreciable numbers of natural products with no structural precedent. Together, these results suggest that the development of innovative discovery methods will continue to yield compounds with unique structural and biological properties.

    See publication
  • Nonclassical Size Dependence of Permeation Defines Bounds for Passive Adsorption of Large Drug Molecules

    Journal of Medicinal Chemistry

    Macrocyclic peptides are considered large enough to inhibit “undruggable” targets, but the design of passively cell-permeable molecules in this space remains a challenge due to the poorly understood role of molecular size on passive membrane permeability. Using split-pool combinatorial synthesis, we constructed a library of cyclic, per-N-methlyated peptides spanning a wide range of calculated lipohilicities (0 < AlogP < 8) and molecular weights (∼800 Da < MW < ∼1200 Da). Analysis by…

    Macrocyclic peptides are considered large enough to inhibit “undruggable” targets, but the design of passively cell-permeable molecules in this space remains a challenge due to the poorly understood role of molecular size on passive membrane permeability. Using split-pool combinatorial synthesis, we constructed a library of cyclic, per-N-methlyated peptides spanning a wide range of calculated lipohilicities (0 < AlogP < 8) and molecular weights (∼800 Da < MW < ∼1200 Da). Analysis by the parallel artificial membrane permeability assay revealed a steep drop-off in apparent passive permeability with increasing size in stark disagreement with current permeation models. This observation, corroborated by a set of natural products, helps define criteria for achieving permeability in larger molecular size regimes and suggests an operational cutoff, beyond which passive permeability is constrained by a sharply increasing penalty on membrane permeation.

    See publication
  • Passive Membrane Permeability in Cyclic Peptomer Scaffolds Is Robust to Extensive Variation in Side Chain Functionality and Backbone Geometry

    Journal of Medicinal Chemistry

    Synthetic and natural cyclic peptides provide a testing ground for studying membrane permeability in nontraditional drug scaffolds. Cyclic peptomers, which incorporate peptide and N-alkylglycine (peptoid) residues, combine the stereochemical and geometric complexity of peptides with the functional group diversity accessible to peptoids. We synthesized cyclic peptomer libraries by split-pool techniques, separately permuting side chain and backbone geometry, and analyzed their membrane…

    Synthetic and natural cyclic peptides provide a testing ground for studying membrane permeability in nontraditional drug scaffolds. Cyclic peptomers, which incorporate peptide and N-alkylglycine (peptoid) residues, combine the stereochemical and geometric complexity of peptides with the functional group diversity accessible to peptoids. We synthesized cyclic peptomer libraries by split-pool techniques, separately permuting side chain and backbone geometry, and analyzed their membrane permeabilities using the parallel artificial membrane permeability assay. Nearly half of the side chain permutations had permeability coefficients (Papp) > 1 × 10–6 cm/s. Some backbone geometries enhanced permeability due to their ability to form more stable intramolecular hydrogen bond networks compared with other scaffolds. These observations suggest that hexameric cyclic peptomers can have good passive permeability even in the context of extensive side chain and backbone variation, and that high permeability can generally be achieved within a relatively wide lipophilicity range.

    Other authors
    See publication
  • Stereochemistry Balances Cell Permeability and Solubility in the Naturally Derived Phepropeptin Cyclic Peptides

    Journal of Medicinal Chemistry

    Cyclic peptide (CP) natural products provide useful model systems for mapping “beyond-Rule-of-5” (bRo5) space. We identified the phepropeptins as natural product CPs with potential cell permeability. Synthesis of the phepropeptins and epimeric analogues revealed much more rapid cellular permeability for the natural stereochemical pattern. Despite being more cell permeable, the natural compounds exhibited similar aqueous solubility as the corresponding epimers, a phenomenon explained by…

    Cyclic peptide (CP) natural products provide useful model systems for mapping “beyond-Rule-of-5” (bRo5) space. We identified the phepropeptins as natural product CPs with potential cell permeability. Synthesis of the phepropeptins and epimeric analogues revealed much more rapid cellular permeability for the natural stereochemical pattern. Despite being more cell permeable, the natural compounds exhibited similar aqueous solubility as the corresponding epimers, a phenomenon explained by solvent-dependent conformational flexibility among the natural compounds. When analyzing the polarity of the solution structures we found that neither the number of hydrogen bonds nor the total polar surface area accurately represents the solvation energies of the high and low dielectric conformations. This work adds to a growing number of natural CPs whose solvent-dependent conformational behavior allows for a balance between aqueous solubility and cell permeability, highlighting structural flexibility as an important consideration in the design of molecules in bRo5 chemical space.

    Other authors
    See publication
  • A Strategy for Direct Chemical Activation of the Retinoblastoma Protein

    ACS Chemical Biology

    The retinoblastoma (Rb) tumor suppressor protein negatively regulates cell proliferation by binding and inhibiting E2F transcription factors. Rb inactivation occurs in cancer cells upon cyclin-dependent kinase (Cdk) phosphorylation, which induces E2F release and activation of cell cycle genes. We present a strategy for activating phosphorylated Rb with molecules that bind Rb directly and enhance affinity for E2F. We developed a fluorescence polarization assay that can detect the effect of…

    The retinoblastoma (Rb) tumor suppressor protein negatively regulates cell proliferation by binding and inhibiting E2F transcription factors. Rb inactivation occurs in cancer cells upon cyclin-dependent kinase (Cdk) phosphorylation, which induces E2F release and activation of cell cycle genes. We present a strategy for activating phosphorylated Rb with molecules that bind Rb directly and enhance affinity for E2F. We developed a fluorescence polarization assay that can detect the effect of exogenous compounds on modulating affinity of Rb for the E2F transactivation domain. We found that a peptide capable of disrupting the compact inactive Rb conformation increases affinity of the repressive Rb–E2F complex. Our results demonstrate the feasibility of discovering novel molecules that target the cell cycle and proliferation through directly targeting Rb rather than upstream kinase activity.

    See publication
  • Going Out on a Limb: Delineating The Effects of β-Branching, N-Methylation, and Side Chain Size on the Passive Permeability, Solubility, and Flexibility of Sanguinamide A Analogues

    Journal of Medicinal Chemistry

    It is well established that intramolecular hydrogen bonding and N-methylation play important roles in the passive permeability of cyclic peptides, but other structural features have been explored less intensively. Recent studies on the oral bioavailability of the cyclic heptapeptide sanguinamide A have raised the question of whether steric occlusion of polar groups via β-branching is an effective, yet untapped, tool in cyclic peptide permeability optimization. We report the structures of 17…

    It is well established that intramolecular hydrogen bonding and N-methylation play important roles in the passive permeability of cyclic peptides, but other structural features have been explored less intensively. Recent studies on the oral bioavailability of the cyclic heptapeptide sanguinamide A have raised the question of whether steric occlusion of polar groups via β-branching is an effective, yet untapped, tool in cyclic peptide permeability optimization. We report the structures of 17 sanguinamide A analogues designed to test the relative contributions of β-branching, N-methylation, and side chain size to passive membrane permeability and aqueous solubility. We demonstrate that β-branching has little effect on permeability compared to the effects of aliphatic carbon count and N-methylation of exposed NH groups. We highlight a new N-methylated analogue of sanguinamide A with a Leu substitution at position 2 that exhibits solvent-dependent flexibility and improved permeability over that of the natural product.

    Other authors
    See publication
  • Probing the physicochemical boundaries of cell permeability and oral bioavailability in lipophilic macrocycles inspired by natural products

    Journal of medicinal chemistry

    Cyclic peptide natural products contain a variety of conserved, nonproteinogenic structural elements such as d-amino acids and amide N-methylation. In addition, many cyclic peptides incorporate γ-amino acids and other elements derived from polyketide synthases. We hypothesized that the position and orientation of these extended backbone elements impact the ADME properties of these hybrid molecules, especially their ability to cross cell membranes and avoid metabolic degradation. Here we report…

    Cyclic peptide natural products contain a variety of conserved, nonproteinogenic structural elements such as d-amino acids and amide N-methylation. In addition, many cyclic peptides incorporate γ-amino acids and other elements derived from polyketide synthases. We hypothesized that the position and orientation of these extended backbone elements impact the ADME properties of these hybrid molecules, especially their ability to cross cell membranes and avoid metabolic degradation. Here we report the synthesis of cyclic hexapeptide diastereomers containing γ-amino acids (e.g., statines) and systematically investigate their structure–permeability relationships. These compounds were much more water-soluble and, in many cases, were both more membrane permeable and more stable to liver microsomes than a similar non-statine-containing derivative. Permeability correlated well with the extent of intramolecular hydrogen bonding observed in the solution structures determined in the low-dielectric solvent CDCl3, and one compound showed an oral bioavailability of 21% in rat. Thus, the incorporation of γ-amino acids offers a route to increase backbone diversity and improve ADME properties in cyclic peptide scaffolds.

    Other authors
    See publication
  • Cell-permeable cyclic peptides from synthetic libraries inspired by natural products

    Journal of the American Chemical Society

    Drug design efforts are turning to a new generation of therapeutic targets, such as protein–protein interactions (PPIs), that had previously been considered “undruggable” by typical small molecules. There is an emerging view that accessing these targets will require molecules that are larger and more complex than typical small molecule drugs. Here, we present a methodology for the discovery of geometrically diverse, membrane permeable cyclic peptide scaffolds based on the synthesis and…

    Drug design efforts are turning to a new generation of therapeutic targets, such as protein–protein interactions (PPIs), that had previously been considered “undruggable” by typical small molecules. There is an emerging view that accessing these targets will require molecules that are larger and more complex than typical small molecule drugs. Here, we present a methodology for the discovery of geometrically diverse, membrane permeable cyclic peptide scaffolds based on the synthesis and permeability screening of a combinatorial library, followed by deconvolution of membrane-permeable scaffolds to identify cyclic peptides with good to excellent passive cell permeabilities. We use a combination of experimental and computational approaches to investigate structure-permeability relationships in one of these scaffolds, and uncover structural and conformational factors that govern passive membrane diffusion in a related set of cyclic peptide diastereomers. Further, we investigate the dependency of permeability on side-chain identity of one of these scaffolds through single-point diversifications to show the adaptability of these scaffolds toward development of permeability-biased libraries suitable for bioactivity screens. Overall, our results demonstrate that many novel, cell permeable scaffolds exist beyond those found in extant natural products, and that such scaffolds can be rapidly identified using a combination of synthesis and deconvolution which can, in principle, be applied to any type of macrocyclic template.

    Other authors
    See publication
  • Revisiting N-to-O Acyl Shift for Synthesis of Natural Product-like Cyclic Depsipeptides

    Organic Letters

    Despite the prevalence of head-to-side chain threonine linkages in natural products, their incorporation has been underexplored in synthetic cyclic peptides. Herein we investigate a cyclic peptide scaffold able to undergo an N–O acyl rearrangement. Upon acylation of the amine with diverse carboxylic acids, the resulting cyclic depsipeptides displayed favorable cellular permeability and a conformation similar to the parent peptide. The rearrangement was found to be scaffold and conformation…

    Despite the prevalence of head-to-side chain threonine linkages in natural products, their incorporation has been underexplored in synthetic cyclic peptides. Herein we investigate a cyclic peptide scaffold able to undergo an N–O acyl rearrangement. Upon acylation of the amine with diverse carboxylic acids, the resulting cyclic depsipeptides displayed favorable cellular permeability and a conformation similar to the parent peptide. The rearrangement was found to be scaffold and conformation dependent as evidenced by molecular dynamics experiments.

    Other authors
    See publication
  • The functional group on (E)-4,4′–disubstituted stilbenes influences toxicity and antioxidative activity in differentiated PC-12 cells

    Bioorganic & Medicinal Chemistry Letters

    This work probes the relationship between stilbene functional group and biological activity. The biological activity of synthesized stilbenes (E)-4,4′-dicyanostilbene, (E)-4,4′-diacetylstilbene, (E)-4,4′-diaminostilbene, a novel stilbene, 1,1′-(vinylenedi-p-phenylene)diethanol, and (E)-stilbene was assessed at biologically relevant nanomolar concentrations using the MTS cell viability assay in differentiated PC-12 cells under optimal culture conditions and conditions of oxidative stress. Under…

    This work probes the relationship between stilbene functional group and biological activity. The biological activity of synthesized stilbenes (E)-4,4′-dicyanostilbene, (E)-4,4′-diacetylstilbene, (E)-4,4′-diaminostilbene, a novel stilbene, 1,1′-(vinylenedi-p-phenylene)diethanol, and (E)-stilbene was assessed at biologically relevant nanomolar concentrations using the MTS cell viability assay in differentiated PC-12 cells under optimal culture conditions and conditions of oxidative stress. Under optimal culture conditions the synthesized stilbene derivatives were found to be non-toxic to cells at concentrations up to 10 μg/ml. To mimic oxidative stress, the activity of these stilbene derivatives in the presence of 0.03% H2O2 was investigated. Stilbene derivatives with electron-withdrawing functional groups were 2–3 times more toxic than the H2O2 control, indicating that they may form toxic metabolites in the presence of H2O2. Fluorescence data supported that stilbene derivatives with electron-withdrawing functional groups, (E)-4,4′-dicyanostilbene and (E)-4,4′-diacetylstilbene, may react with H2O2. In contrast, the stilbene derivative with a strong electron-donating functional group, (E)-4,4′-diaminostilbene, rescued neurons from H2O2-induced toxicity. The DPPH assay confirmed that (E)-4,4′-diaminostilbene is able to scavenge free radicals. These data indicate that the Hammett value of the functional group correlates with the biological activity of (E)-4,4′-disubstituted stilbenes in differentiated PC-12 cells.

    Other authors
    • Genevieve Garcia
    See publication
  • Synthesis, structure, and spectroscopy of two benzil-based α-diimine ligands and their palladium(II) complexes

    Journal of Coordination Chemistry

    Two α-diimine ligands were prepared in 60–70% yield via p-toluenesulfonic acid-catalyzed condensation reactions from benzil with 4-bromoaniline and with p-anisidine. Palladium(II) complexes were prepared from both ligands in 70–80% yield. X-ray structures were obtained for the ligand prepared from p-anisidine and its palladium(II) complex. A notable feature observed in the former was its unconjugated C–N double bonds, both in the (E)-configuration. The latter structure possessed two molecules…

    Two α-diimine ligands were prepared in 60–70% yield via p-toluenesulfonic acid-catalyzed condensation reactions from benzil with 4-bromoaniline and with p-anisidine. Palladium(II) complexes were prepared from both ligands in 70–80% yield. X-ray structures were obtained for the ligand prepared from p-anisidine and its palladium(II) complex. A notable feature observed in the former was its unconjugated C–N double bonds, both in the (E)-configuration. The latter structure possessed two molecules of the metal complex in its unit cell, both of which have diimine cores with a degree of conjugation and a nonideal square-planar geometry around palladium caused by the small bite angles (79.61(3) and 79.15(3)°) of the diimine ligands. Solution-phase electronic absorption spectra of the ligands in chloroform have two bands from π→π ∗ and n→π ∗ transitions at 269–345 nm. Absorption spectra of the complexes in chloroform exhibited bands attributed to ligand-centered transitions that were red-shifted as compared to free ligands. Only the spectrum obtained from a chloroform solution of the palladium(II) complex with the diimine ligand prepared from p-anisidine featured a band at approximately 520 nm, which was assigned to a combination of d π(Pd)→π ∗ and n(Cl)→π ∗ transitions.

    Other authors
    See publication
  • The Synthesis, Photophysical Characterization, and X-Ray Structure Analysis of Two Polymorphs of 4,4′-Diacetylstilbene

    Helvetica Chimica Acta

    Abstract:
    A palladium(II) acetate-catalyzed synthesis of 1 that utilizes the novel triazene 1-{4-[(E)-morpholin-4-yldiazenyl]phenyl}ethanone as a synthon is described. The room temperature absorption spectra of 1 in various solvents exhibited a π→π* transition in the range of 330–350 nm. Compound 1 was observed to be luminescent, with room-temperature solution and solid-state emission spectra that exhibited maxima in the range 400–500 nm. All room-temperature absorption and emission spectra…

    Abstract:
    A palladium(II) acetate-catalyzed synthesis of 1 that utilizes the novel triazene 1-{4-[(E)-morpholin-4-yldiazenyl]phenyl}ethanone as a synthon is described. The room temperature absorption spectra of 1 in various solvents exhibited a π→π* transition in the range of 330–350 nm. Compound 1 was observed to be luminescent, with room-temperature solution and solid-state emission spectra that exhibited maxima in the range 400–500 nm. All room-temperature absorption and emission spectra exhibited some degree of vibrational structure. The emission spectrum of 1 at 77 K in propanenitrile glass was broad and featureless with a maximum at 447 nm. Compound 1 crystallized as a yellow and colorless polymorph. X-Ray structure analyses of both of these polymorphs and 1-{4-[(E)-morpholin-4-yldiazenyl]phenyl}ethanone are presented.

    Other authors
    • Frank R. Fronczek
    • Ralph Isovitsch
    See publication

Courses

  • Advanced Topics in Inorganic Chemistry

    -

  • Bioorganic Chemistry of Amino Acids & Peptides

    -

  • Modern Synthetic Methods

    -

  • Organic Structure Analysis from Spectra

    -

  • Selectivity and Strategy in Organic Synthesis

    -

  • Teaching Chemistry

    -

More activity by Cameron

View Cameron’s full profile

  • See who you know in common
  • Get introduced
  • Contact Cameron directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Cameron Pye

Add new skills with these courses