[HTML][HTML] Urinary phthalate metabolite concentrations and serum hormone levels in pre-and perimenopausal women from the Midlife Women's Health Study

C Chiang, DC Pacyga, RS Strakovsky, RL Smith…�- Environment�…, 2021 - Elsevier
C Chiang, DC Pacyga, RS Strakovsky, RL Smith, T James-Todd, PL Williams, R Hauser…
Environment international, 2021Elsevier
Background Phthalate exposure is associated with altered reproductive function, but little is
known about associations between phthalate and hormone levels in midlife women.
Methods This cross-sectional analysis includes 45–54-year-old pre-and perimenopausal
women from Baltimore, MD and its surrounding counties enrolled in the Midlife Women's
Health Study (n= 718). Serum and urine samples were collected from participants once a
week for four consecutive weeks to span the menstrual cycle. Serum samples were assayed�…
Background
Phthalate exposure is associated with altered reproductive function, but little is known about associations between phthalate and hormone levels in midlife women.
Methods
This cross-sectional analysis includes 45–54-year-old pre- and perimenopausal women from Baltimore, MD and its surrounding counties enrolled in the Midlife Women’s Health Study (n�=�718). Serum and urine samples were collected from participants once a week for four consecutive weeks to span the menstrual cycle. Serum samples were assayed for estradiol, testosterone, progesterone, sex hormone binding globulin (SHBG), follicle-stimulating hormone (FSH), and anti-M�llerian hormone (AMH), and geometric means were calculated for each hormone across all four weeks. Urine samples were analyzed for nine phthalate metabolites from pools of one-to-four urine samples. Phthalate metabolite concentrations were specific gravity-adjusted and assessed as individual metabolites or as molar sums of metabolites from common parents (di(2-ethylhexyl) phthalate metabolites, ∑DEHP), exposure sources (plastic, ∑Plastics; personal care products, ∑PCP), biological activity (anti-androgenic, ∑AA), and sum of all metabolites (∑Phthalates). We used linear regression models to assess overall associations of phthalate metabolites with hormones, controlling for important demographic, lifestyle, and health factors. We also explored whether associations differed by menopause status, body mass index (BMI), and race/ethnicity.
Results
Most participants were non-Hispanic white (67%) or black (29%), college-educated (65%), employed (80%), and had somewhat higher mean urinary phthalate metabolite concentrations than other U.S. women. Overall, the following positive associations were observed between phthalate metabolites and hormones: ∑DEHP (%Δ: 4.9; 95%CI: 0.5, 9.6), ∑Plastics (%Δ: 5.1; 95%CI: 0.3, 10.0), and ∑AA (%Δ: 7.8; 95%CI: 2.3, 13.6) with estradiol; MiBP (%Δ: 6.6; 95%CI: 1.5, 12.1) with testosterone; ∑DEHP (%Δ: 8.3; 95%CI: 1.5, 15.6), ∑Plastics (%Δ: 9.8; 95%CI: 2.4, 17.7), MEP (%Δ: 4.6; 95%CI: 0.1, 9.2), ∑PCP (%Δ: 6.0; 95%CI: 0.2, 12.2), ∑Phthalates (%Δ: 9.0; 95%CI: 2.1, 16.5), and ∑AA (%Δ: 12.9; 95%CI: 4.4, 22.1) with progesterone; and MBP (%Δ: 8.5; 95%CI: 1.2, 16.3) and ∑AA (%Δ: 9.0; 95%CI: 1.3, 17.4) with AMH. Associations of phthalate metabolites with hormones differed by menopause status (strongest in premenopausal women for estradiol, progesterone, and FSH), BMI (strongest in obese women for progesterone), and race/ethnicity (strongest in non-Hispanic white women for estradiol and AMH).
Conclusions
We found that phthalate metabolites were positively associated with several hormones in midlife women, and that some demographic and lifestyle characteristics modified these associations. Future longitudinal studies are needed to corroborate these findings in more diverse midlife populations.
Elsevier