Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Apr 6;105(3):679-690.
doi: 10.1093/jmammal/gyae030. eCollection 2024 Jun.

Scanning efficacy of p-Chips implanted in the wing and leg of the Big Brown Bat (Eptesicus fuscus)

Affiliations

Scanning efficacy of p-Chips implanted in the wing and leg of the Big Brown Bat (Eptesicus fuscus)

Shane D I Seheult et al. J Mammal. .

Abstract

Individual marking techniques are critical for studying animals, especially in the wild. Current marking methods for bats (Order Chiroptera) have practical limitations and some can cause morbidity. We tested the p-Chip (p-Chip Corp.)-a miniaturized, laser light-activated microtransponder-as a prospective marking technique in a captive research colony of Big Brown Bats (Eptesicus fuscus). We assessed long-term readability and postimplantation effects of p-Chips injected subcutaneously above the second metacarpal (wing; n = 30) and the tibia (leg; n = 13 in both locations). Following implantation (Day 0), p-Chips were scanned with a hand-held ID reader (wand) on postimplantation days (PIDs) 1, 8, 15, 22, 32, 60, 74, 81, 88, 95, and over 1 year later (PID 464). For each trial, we recorded: (1) animal handling time; (2) scan time; (3) number of wand flashes; (4) p-Chip visibility; and (5) overall condition of the bat. Average scan times for p-Chips implanted in both the wing and leg increased over the duration of the study; however, the number of wand flashes decreased, suggesting that efficacy of p-Chip recording increased with user experience. Importantly, over 464 days both the visibility and readability of p-Chips in the wing remained high and superior to tags in the leg, establishing the second metacarpal as the preferred implantation site. Observed morbidity and mortality in captive bats with p-Chips was similar to baseline values for bats without these tags. Because scan efficiency on PID 464 was comparable with earlier days, this indicates that p-Chips implanted in the wing may be suitable as a long-term marking method. Our provisional results suggest that p-Chips are viable for extended field testing to see if they are suitable as an effective alternative to traditional methods to mark bats.

Las técnicas de marcaje individual son fundamentales para el estudio de los animales, especialmente en la naturaleza. Los métodos actuales de marcaje de murciélagos (Chiroptera) tienen limitaciones prácticas y algunos pueden causar morbilidad. Probamos el p-Chip (p-Chip Corp.)—un microtranspondedor miniaturizado activado por luz láser—como técnica de marcaje prospectivo en una colonia en cautiverio de murciélagos morenos (Eptesicus fuscus). Se evaluó la legibilidad a largo plazo y los efectos pos-implantación de los p-Chips inyectados subcutáneamente sobre el segundo metacarpiano (ala; n = 30) y la tibia (pata; n = 13 en ambas localizaciones). Tras la implantación (día 0), se escanearon los p-Chips con un lector de identificación manual (vara) en los días posteriores a la inyección (PID) 1, 8, 15, 22, 32, 60, 74, 81, 88, 95, y m��s de un a��o despu��s (PID 464). En cada ensayo se registró: (1) el tiempo total de manipulación del animal; (2) el tiempo de exploración; (3) el número de destellos de proximidad del lector; (4) la visibilidad del p-Chip; y (5) el estado general del murciélago. Los promedios del tiempo de escaneado de los p-Chips implantados tanto en el ala como en la pata aumentaron a lo largo del estudio; sin embargo, el número de destellos del lector disminuyó, lo que sugiere que la eficacia del registro del p-Chip aumentó con la experiencia del usuario. A lo largo de 464 días, tanto la visibilidad como la legibilidad de los p-Chips en el ala siguieron siendo altas y superiores a las de las etiquetas en la pata, lo que estableció el segundo metacarpiano como el lugar preferido de implantación. La morbilidad y mortalidad observadas en murciélagos en cautiverio con p-Chips fue similar a los valores de referencia de los murciélagos sin estas marcas. Dado que la eficacia del escaneado en el PID 464 fue comparable a la de días anteriores, es probable que los p-Chips implantados en el ala sean adecuados como método de marcado a largo plazo. Nuestros resultados provisionales sugieren que los p-Chips son viables para pruebas de campo prolongadas como alternativa prospectiva a los métodos tradicionales de marcaje de murciélagos.

Keywords: Chiroptera; handling time; marking; metacarpal; radio tag; scan time; tag visibility; tibia.

PubMed Disclaimer

Conflict of interest statement

None declared.

Figures

Fig. 1.
Fig. 1.
Subcutaneous implantation and laser scanning of p-Chips in the wing and leg of the Big Brown Bat. (A) Injection of p-Chip parallel to the second metacarpal. (B) Injection of p-Chip near the base of the foot parallel to the tibia. (C) Visibility of p-Chip against the second metacarpal and (D) in the tissue beside the tibia (location of the p-Chip in both images is indicated by a white arrow). (E) Using the wand to illuminate (scan) p-Chips implanted in the wing and (F) the leg. p-Chip dimension = 500 × 500 µm.
Fig. 2.
Fig. 2.
Bat handling times per recording day for p-Chips implanted in the wing and leg. Mean ± SE handling times were measured separately for p-Chips implanted in the second metacarpal (wing, n = 30) and tibia (leg, n = 13) from PID 8 to PID 95, with a subsequent recording session ~1 year later on PID 464. Dotted and dashed lines represent the best-fitting, mixed-model regression lines for p-Chips implanted in the wing (open circles) and leg (closed squares). For data points collected on the same day, the markers have been displaced ±0.3 along the x-axis for clarity.
Fig. 3.
Fig. 3.
Scan times per recording day for p-Chips implanted in the wing and leg. Mean ± SE scan times were recorded separately for p-Chips implanted in the second metacarpal (wing, n = 30) and tibia (leg, n = 13) from PID 1 to PID 95, with a subsequent recording session ~1 year later on PID 464. Data do not include occurrences of unsuccessful p-Chip reads when the maximum scan time was reached (165 s). Dotted and dashed lines represent the best-fitting, mixed-model regression lines for p-Chips implanted in the wing (open circles) and leg (closed squares). For data points collected on the same day, the markers have been displaced ±0.3 along the x-axis for clarity.
Fig. 4.
Fig. 4.
Tag visibility per recording day for p-Chips implanted in the wing and leg. Data illustrate the proportion of p-Chips implanted in the second metacarpal (wing, n = 30) and tibia (leg, n = 13) that were visible to the naked eye from PID 22 to PID 95, with a subsequent recording session ~1 year later on PID 464. Visibility measured according to the hander’s subjective judgement using a nominal yes/no scale. Dotted and dashed lines represent the best-fitting, mixed-model regression lines for p-Chips implanted in the wing (open circles) and leg (closed squares).
Fig. 5.
Fig. 5.
Wand flashes per recording day for p-Chips implanted in the wing and leg. Shown are the mean ± SE number of wand flashes recorded in p-Chips implanted in the second metacarpal (wing, n = 30) and tibia (leg, n = 13), prior to a successful p-Chip read from PID 1 to PID 95, with a subsequent recording session ~1 year later on PID 464. Dotted and dashed lines represent the best-fitting, mixed-model regression lines for p-Chips implanted in the wing (open circles) and leg (closed squares). For data points collected on the same day, the markers have been displaced ±0.3 along the x-axis for clarity.
Fig. 6.
Fig. 6.
Unreadable tags per recording day for p-Chips implanted in the wing and leg. Shown are the proportion of unreadable p-Chips in the second metacarpal (wing, n = 30) and tibia (leg, n = 13) over the duration of the study. Dotted and dashed lines represent the best-fitting, mixed-model regression lines for p-Chips implanted in the wing (open circles) and leg (closed squares).

Similar articles

References

    1. Barclay RMR., Bell GP. 1988. Marking and observational techniques. In: Kunz TH, editor. Ecological and behavioural methods for the study of bats. Washington (DC, USA): Smithsonian Institution Press; p. 59–76.
    1. Barker GB, Lumsden LF, Dettmann EB, Schedvin NK, Schulz M, Watkins D, Jansen L.. 2001. The effect of forearm bands on insectivorous bats (Microchiroptera) in Australia. Wildlife Research 28(3):229–237. 10.1071/WR99068 - DOI
    1. Barnard SM. 1989. The use of microchip implants for identifying big brown bats (Eptesicus fuscus). Animal Keepers Forum 16(2):50–52. https://www.biodiversitylibrary.org/bibliography/125504
    1. Bates D, Mächler M, Bolker B, Walker S.. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1):1–48. 10.18637/jss.v067.i01 - DOI
    1. Bonaccorso FJ, Smythe N, Humphrey SR.. 1976. Improved techniques for marking bats. Journal of Mammalogy 57(1):181–182. 10.2307/1379526 - DOI