Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Mar;21(1):106-115.
doi: 10.14245/ns.2448062.031. Epub 2024 Mar 31.

Transoral Robotic-Assisted Neurosurgery for Skull Base and Upper Spine Lesions

Affiliations

Transoral Robotic-Assisted Neurosurgery for Skull Base and Upper Spine Lesions

Jun Muto et al. Neurospine. 2024 Mar.

Abstract

Objective: The application of the da Vinci Surgical System in neurosurgery is limited due to technical difficulties requiring precise maneuvers and small instruments. This study details the advantages and disadvantages of robotics in neurosurgery and the reachable range of the transoral approach to lesions of the skull base and upper cervical spine.

Methods: In a cadaver study, the da Vinci Xi robot, lacking haptic feedback, was utilized for sagittal and coronal approaches on 5 heads, facilitating dura suturing in 3, with a 30°-angled drill for bone removal.

Results: Perfect exposure of all the nasopharyngeal sites, clivus, sellar, and choana, including the bilateral eustachian tubes, was achieved without any external incisions using this palatal split approach of transoral robotic surgery. The time required to perform a single stitch, knot, and complete single suture in robotic suturing of deep-seated were significantly less compared to manual suturing via the endonasal approach.

Conclusion: This is the first report to show the feasibility of suturing the dural defect in deep-seated lesions transorally and revealed that the limit of reach in the coronal plane via a transoral approach with incision of the soft palate is the foramen ovale. This preclinical investigation also showed that the transoral robotic approach is feasible for lesions extending from the sellar to the C2 in the sagittal plane. Refinement of robotic instruments for specific anatomic sites and future neurosurgical studies are needed to further demonstrate the feasibility and effectiveness of this system in treating benign and malignant skull base lesions.

Keywords: Foramen ovale; Sellar; Suturing; Transoral approach; da Vinci Xi.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest

The authors have nothing to disclose.

Figures

Fig. 1.
Fig. 1.
Setup for the da Vinci Xi Surgical System (Intuitive Surgical, Inc., Sunnyvale, CA, USA). (A) The patient was supine, positioned in the minimally extended position. (B) The da Vinci Xi Surgical System was introduced from the left side of the patient. (C) The surgeon faced the console and immersed himself in the surgical field to perform the operation. (D) A Dubakey forceps with an 8-mm diameter arm.
Fig. 2.
Fig. 2.
da Vinci Xi Surgical System (Intuitive Surgical, Inc., Sunnyvale, CA, USA). approach to the skull base in the sagittal plane. (A) The first view of the transoral approach observing the soft palate and hard palate. (B) View after lateralization of the soft palate. (C) The incision of the nasopharynx for mucosal muscle flaps. (D) Exposure of clivus bone and C1 and C2 vertebrae with invert of mucosal muscle flap. (E) The endonasal endoscopic view to the nasopharynx lesion. (F) Opening the sphenoid sinus inferiorly by an angled drill. (G) Opening the sellar floor and exposure of the dura of the pituitary gland. (H) After opening the dura, the pituitary gland can be reached by the arms of the da Vinci Xi Surgical System. (I) Low-magnification view of the surgical corridor to the sellar floor using a transoral corridor.
Fig. 3.
Fig. 3.
da Vinci Xi Surgical System (Intuitive Surgical, Inc., Sunnyvale, CA, USA) approach to the skull base in the coronal plane. (A) View after lateralization of the soft palate. (B) Dissection of the tensor veli palatini and levator veli palatini muscles. (C) Identification of the ICA to avoid injury to the soft connective tissue. (D) Following the ICA to the skull base. (E) Dissection of the soft connective tissue. The ICA and foramen ovale can be identified; the white tube shows the foramen ovale. (F) The ICA going through the foramen lacerum into the intracranial space. The reachable lateral limitation is the foramen ovale. ICA, internal carotid artery.
Fig. 4.
Fig. 4.
da Vinci Xi Surgical System (Intuitive Surgical, Inc., Sunnyvale, CA, USA) approach to suturing the dura defects of the clivus. (A) Dural defect in the clivus dura. (B) Preparation of fascia (15 mm) taken from the thigh. (C) First, the top middle part of the defect is sutured, inserting the fascia into the subdural space in an inlay manner. (D) A knot is made of 7-0 proline using the Dubakey arms of the da Vinci. The system provides no haptics by hand, and surgical information is only visual. (E) The knot is tightened by robotic arms; because the working corridor is limited, the robotic arms should be used back and forth, not horizontally. (F) Suturing of the right arm, which is controlled by the surgeon’s dominant hand. (G) Suturing of the median of the bottom part with the needle held downward. (H) Suturing of the left part by an arm controlled by the surgeon’s nondominant hand without any problems. (I) Final view after the fascia was sutured to the dura mater of the clivus. The numbers (①–⑧) indicate the order in which the stitches were to be made.

Similar articles

References

    1. Carrau RL, Prevedello DM, de Lara D, et al. Combined transoral robotic surgery and endoscopic endonasal approach for the resection of extensive malignancies of the skull base. Head Neck. 2013;35:E351–8. - PubMed
    1. Dallan I, Castelnuovo P, Montevecchi F, et al. Combined transoral transnasal robotic-assisted nasopharyngectomy: a cadaveric feasibility study. Eur Arch Otorhinolaryngol. 2012;269:235–9. - PubMed
    1. Sreenath SB, Rawal RB, Zanation AM. The combined endonasal and transoral approach for the management of skull base and nasopharyngeal pathology: a case series. Neurosurg Focus. 2014;37:E2. - PubMed
    1. Ozer E, Waltonen J. Transoral robotic nasopharyngectomy: a novel approach for nasopharyngeal lesions. Laryngoscope. 2008;118:1613–6. - PubMed
    1. Lee JY, O’Malley BW, Newman JG, et al. Transoral robotic surgery of craniocervical junction and atlantoaxial spine: a cadaveric study. J Neurosurg Spine. 2010;12:13–8. - PubMed

LinkOut - more resources