Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Oct 30;381(2259):20220334.
doi: 10.1098/rsta.2022.0334. Epub 2023 Sep 11.

Thermochemistry of hybrid materials

Affiliations
Review

Thermochemistry of hybrid materials

Alexandra Navrotsky et al. Philos Trans A Math Phys Eng Sci. .

Abstract

This paper is based on a lecture Navrotsky gave honouring the memory of Paul McMillan. It summarizes our recent findings in the thermodynamics of hybrid materials including metal organic frameworks (MOFs), polymer-derived ceramics (PDCs) and ionic organic-inorganic compounds. This work describes the main structure types and their corresponding thermodynamic stability, obtained from calorimetric measurements in our laboratory. The effects of linker substituent and framework topology on the thermodynamic stability of isostructural zeolitic imidazolate frameworks and other MOFs are discussed. The paper documents the effects of interdomain interaction and bonding speciation on the thermodynamic stability of various PDC compositions, including SiC, SiOC and SiCN systems. The paper further describes effects of different cations on the thermodynamic stability of selected ionic organic-inorganic compounds. Similarities and differences among these materials are emphasized. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.

Keywords: hybrid materials; organic–inorganic; thermochemistry; thermodynamics.

PubMed Disclaimer

LinkOut - more resources