Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 2:12:e84051.
doi: 10.7554/eLife.84051.

Smoking, alcohol consumption, and 24 gastrointestinal diseases: Mendelian randomization analysis

Affiliations

Smoking, alcohol consumption, and 24 gastrointestinal diseases: Mendelian randomization analysis

Shuai Yuan et al. Elife. .

Abstract

Background: Whether the positive associations of smoking and alcohol consumption with gastrointestinal diseases are causal is uncertain. We conducted this Mendelian randomization (MR) to comprehensively examine associations of smoking and alcohol consumption with common gastrointestinal diseases.

Methods: Genetic variants associated with smoking initiation and alcohol consumption at the genome-wide significance level were selected as instrumental variables. Genetic associations with 24 gastrointestinal diseases were obtained from the UK Biobank, FinnGen study, and other large consortia. Univariable and multivariable MR analyses were conducted to estimate the overall and independent MR associations after mutual adjustment for genetic liability to smoking and alcohol consumption.

Results: Genetic predisposition to smoking initiation was associated with increased risk of 20 of 24 gastrointestinal diseases, including 7 upper gastrointestinal diseases (gastroesophageal reflux, esophageal cancer, gastric ulcer, duodenal ulcer, acute gastritis, chronic gastritis, and gastric cancer), 4 lower gastrointestinal diseases (irritable bowel syndrome, diverticular disease, Crohn's disease, and ulcerative colitis), 8 hepatobiliary and pancreatic diseases (non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis, liver cancer, cholecystitis, cholelithiasis, and acute and chronic pancreatitis), and acute appendicitis. Fifteen out of 20 associations persisted after adjusting for genetically predicted alcohol consumption. Genetically predicted higher alcohol consumption was associated with increased risk of duodenal ulcer, alcoholic liver disease, cirrhosis, and chronic pancreatitis; however, the association for duodenal ulcer did not remain statistically significant after adjustment for genetic predisposition to smoking initiation.

Conclusions: This study provides MR evidence supporting causal associations of smoking with a broad range of gastrointestinal diseases, whereas alcohol consumption was associated with only a few gastrointestinal diseases.

Funding: The Natural Science Fund for Distinguished Young Scholars of Zhejiang Province; National Natural Science Foundation of China; Key Project of Research and Development Plan of Hunan Province; the Swedish Heart Lung Foundation; the Swedish Research Council; the Swedish Cancer Society.

Keywords: Mendelian randomization; alcohol consumption; epidemiology; gastrointestinal diseases; genetics; genomics; global health; none; smoking.

Plain language summary

People who smoke cigarettes or drink large amounts of alcohol are more likely to develop disorders with their digestive system. But it is difficult to prove that heavy drinking or smoking is the primary cause of these gastrointestinal diseases. For example, it is possible that having a digestive disorder makes people more likely to take up these habits to reduce pain or discomfort caused by the illness (an effect known as reverse causation). The association may also be the result of confounding factors, such as age or diet, which contribute to digestive problems as well as the health outcomes of smoking and drinking. Additionally, many people who smoke also drink alcohol and vice versa, making it challenging to determine if one or both behaviors contribute to the disease. One solution is to employ Mendelian randomization which uses genetics to determine if two variables are linked. Using this statistical approach, Yuan, Chen, Ruan et al. investigated if people who display genetic variants that predispose someone to becoming a smoker or drinker are at greater risk of developing certain digestive disorders. This reduces the possibility of confounding and reverse causation, as any association between genetic variants will have been present since birth, and will have not been impacted by external factors. Yuan, Chen, Ruan et al. used data from two studies that had collected the genetic and health information of thousands of people living in the United Kingdom or Finland. The analyses revealed that genetic variants associated with cigarette smoking increase the risk of 20 of the 24 gastrointestinal diseases investigated. This risk persisted for most of the disorders, even after adjusting for genes linked with alcohol consumption. Further analysis showed that genetic variants linked to heavy drinking increase the risk of duodenal ulcer, alcoholic liver disease, cirrhosis, and chronic pancreatitis. However, accounting for smoking-linked genes eliminated the relationship with duodenal ulcer. These findings suggest that smoking has detrimental effects on gastrointestinal health. Reducing the number of people who start smoking or encouraging smokers to quit may help prevent digestive diseases. Even though there were fewer associations between heavy alcohol consumption and gastrointestinal illness, further studies are needed to investigate this relationship in more depth.

PubMed Disclaimer

Conflict of interest statement

SY, JC, XR, YS, KZ, XW, XL, DG, SB, EG, SL No competing interests declared

Figures

Figure 1.
Figure 1.. Overview of the present study design.
GERA, Genetic Epidemiology Research on Aging; IIBDGC, the International Inflammatory Bowel Disease Genetics Consortium; MR, Mendelian randomization; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; SNP, single nucleotide polymorphism.
Figure 2.
Figure 2.. Summary of associations of genetically predicted smoking initiation, lifetime smoking, and alcohol consumption with 24 gastrointestinal diseases.
UVMR, univariable Mendelian randomization; MVMR, multivariable Mendelian randomization. The numbers in the box are the odds ratios for associations of exposure for gastrointestinal diseases. The association with a p-value <0.05 but Benjamini-Hochberg adjusted p-value >0.05 was regarded suggestive, and the association with a Benjamini-Hochberg adjusted p-value <0.05 was deemed significant.

Similar articles

Cited by

References

    1. Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154:360–373. doi: 10.1053/j.gastro.2017.08.023. - DOI - PMC - PubMed
    1. Arnson Y, Shoenfeld Y, Amital H. Effects of tobacco smoke on immunity, inflammation and autoimmunity. Journal of Autoimmunity. 2010;34:J258–J265. doi: 10.1016/j.jaut.2009.12.003. - DOI - PubMed
    1. Aune D, Vatten LJ, Boffetta P. Tobacco smoking and the risk of gallbladder disease. European Journal of Epidemiology. 2016;31:643–653. doi: 10.1007/s10654-016-0124-z. - DOI - PMC - PubMed
    1. Aune D, Sen A, Leitzmann MF, Tonstad S, Norat T, Vatten LJ. Tobacco smoking and the risk of diverticular disease-a systematic review and meta-analysis of prospective studies. Colorectal Disease. 2017;19:621–633. doi: 10.1111/codi.13748. - DOI - PubMed
    1. Aune D, Mahamat-Saleh Y, Norat T, Riboli E. Tobacco smoking and the risk of pancreatitis: a systematic review and meta-analysis of prospective studies. Pancreatology. 2019;19:1009–1022. doi: 10.1016/j.pan.2019.09.004. - DOI - PubMed

Publication types