Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec;44(6):672-684.
doi: 10.1111/ics.12810. Epub 2022 Aug 28.

UV and visible light exposure to hair leads to widespread changes in the hair lipidome

Affiliations

UV and visible light exposure to hair leads to widespread changes in the hair lipidome

Alastair B Ross et al. Int J Cosmet Sci. 2022 Dec.

Abstract

Objective: Scalp hair is among the most exposed parts of the human body, yet the impact of visible and UV light on hair lipids, an important structural component of hair, is poorly researched. We have used lipidomics, a broad-based approach to measure lipids in samples, which has hitherto not been applied to UV-exposed hair in the published literature, and could allow for a wider understanding of how UV light impacts on specific hair lipids.

Methods: Mixed blonde Caucasian hair switches were divided into two groups of five, with half of the hair switches exposed to UV and visible light mimicking normal daytime exposure and half left unexposed. LC-MS lipidomics was used to profile the lipids in the hair samples.

Results: A total of 791 lipids and 32 lipid classes with tentative identifications were detected in the hair samples. Nineteen lipid classes and 397 lipids differed between UV-treated and non-treated hair. The main lipid classes that differed were vitamin A fatty acid esters, sterol esters, several ceramides, mono-, di- and triglycerides, phosphatidylethanolamines (all decreased in UV-exposed hair) and bismonoacylglycerolphosphates, acylcarnitines and acylglycines (all increased in UV-exposed hair). Most detected lipids were decreased in UV-exposed hair, supporting earlier work that has found that UV exposure causes oxidation of lipids which would result in a decrease in most lipid classes.

Conclusion: Light exposure to hair has a widespread impact on the hair lipidome. This study also adds to the emerging literature on the hair lipidome, broadening the range of lipid classes reported in hair.

Objectif: Le cuir chevelu est l'une des parties les plus exposées de l'organisme. Cependant, l'impact de la lumière visible et des UV sur les lipides capillaires, un composant structurel important des cheveux, reste mal étudié. Nous avons utilisé la lipidomique, une approche large pour mesurer les lipides présents dans les échantillons de cheveux, qui n'a jusqu’ici pas été appliquée aux cheveux exposés aux UV dans la littérature publiée. Cette approche pourrait permettre de mieux comprendre l'impact de la lumière UV sur des lipides spécifiques des cheveux. MÉTHODES: Les mèches de cheveux caucasiens blonds mélangés ont été divisées en deux groupes de cinq, la moitié des mèches de cheveux étant exposées aux UV et à une lumière visible imitant l’exposition diurne normale tandis que l'autre moitié est restée non exposée. Le profil lipidique des échantillons de cheveux a été établi grâce à la lipidomique de la LC-MS. RÉSULTATS: Au total, 791 lipides et 32 classes de lipides avec des identifications provisoires ont été détectés dans les échantillons de cheveux. Entre les cheveux traités par UV et les cheveux non traités, dix-neuf classes de lipides et 397 lipides se sont avérés différents. Les principales classes de lipides qui différaient étaient les esters d'acides gras de la vitamine A, les esters de stérols, plusieurs céramides, les monoglycérides, diglycérides et triglycérides, les phosphatidyléthanolamines (tous diminués dans les cheveux exposés aux UV) et les bismonoacylglycérolphosphates, acylcarnitines et acylglycines (tous augmentés dans les cheveux exposés aux UV). La plupart des lipides détectés dans les cheveux exposés aux UV n’étaient présents qu'à taux réduit, soit un résultat cohérent avec une étude antérieure ayant montré que l'exposition aux UV provoque l'oxydation des lipides, ce qui entraînerait une diminution de la plupart des classes de lipides.

Conclusion: L'exposition des cheveux à la lumière entraîne un impact généralisé sur leur lipidome. Cette étude vient également compléter la littérature émergente sur le lipidome capillaire, élargissant ainsi la gamme de classes lipidiques rapportées dans les cheveux.

Keywords: Lipidomics; UV light exposure; chemical analysis; hair treatment; mass spectrometry.

PubMed Disclaimer

Conflict of interest statement

Authors ABR, EM, EJL and IH have no conflict of interest to declare.

Figures

FIGURE 1
FIGURE 1
Representative LC–MS/MS chromatogram of a hair lipid extract. Peaks eluting during the first 7 min of the chromatogram are generally polar lipids including phospholipids, while those eluting towards the end of the chromatograms are di‐ and triglycerides. Most of the lipids extracted from hair are polar lipids. The y‐axis is mass spectrometer intensity, and x‐axis is chromatographic retention time (min). The different peak traces represent the total ion count and fragmentation intensities at different molecular mass windows. [Colour figure can be viewed at wileyonlinelibrary.com]
FIGURE 2
FIGURE 2
Principal components analysis (PCA) scores plot of lipid class data. PCA analysis is unsupervised and the clear difference between UV‐exposed and non‐UV‐exposed hair is indicative of the substantial impact of UV exposure on hair. PC1 accounts for 66% of overall variation, PC2 accounts for 13%. [Colour figure can be viewed at wileyonlinelibrary.com]
FIGURE 3
FIGURE 3
Principal components analysis (PCA) scores plot of individual identified lipid data. As for the lipid class data, modelling using the individual lipid data demonstrates the impact of UV exposure on hair lipids. PC1 accounts for 52% of overall variation while PC2 accounts for 15%. [Colour figure can be viewed at wileyonlinelibrary.com]
FIGURE 4
FIGURE 4
Hierarchical clustering heatmap of all detected lipid classes for UV‐exposed and non‐UV‐exposed hair. Data have been scaled by mean centring. Refer to Table S1 for full lipid class names. [Colour figure can be viewed at wileyonlinelibrary.com]
FIGURE 5
FIGURE 5
Hierarchical clustering heat map of the 50 most significantly different lipids between hair exposed to UV light or not. Data have been scaled by mean centring. Refer to Table S1 for full lipid names. [Colour figure can be viewed at wileyonlinelibrary.com]

Similar articles

References

    1. Anderson RL, Merkler DJ. N‐fatty acylglycines: Underappreciated endocannabinoid‐like fatty acid amides? Journal of Biology and Nature. 2017;8(4):156–65. - PMC - PubMed
    1. Appenzeller BMR, Chadeau‐Hyam M, Aguilar L. Skin exposome science in practice: current evidence on hair biomonitoring and future perspectives. Journal of the European Academy of Dermatology and Venereology. 2020;34(Suppl 4):26–30. - PubMed
    1. Bailey AD, Zhang G, Murphy BP. Comparison of damage to human hair fibers caused by monoethanolamine‐ and ammonia‐based hair colorants. Journal of Cosmetic Science. 2014;65(1):1–9. - PubMed
    1. Borodzicz, S. , Rudnicka L., Mirowska‐Guzel D. and Cudnoch‐Jedrzejewska A. (2016). “The role of epidermal sphingolipids in dermatologic diseases.” Lipids in Health and Disease 15: 13Placeholder Text. - PMC - PubMed
    1. Chong J, Yamamoto M, Xia J. MetaboAnalystR 2.0: from raw spectra to biological insights. Metabolites. 2019;9(3):57. - PMC - PubMed

Grants and funding