Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Nov 11:12:765898.
doi: 10.3389/fimmu.2021.765898. eCollection 2021.

Targeted Mass Spectrometry Enables Multiplexed Quantification of Immunomodulatory Proteins in Clinical Biospecimens

Affiliations

Targeted Mass Spectrometry Enables Multiplexed Quantification of Immunomodulatory Proteins in Clinical Biospecimens

Jeffrey R Whiteaker et al. Front Immunol. .

Abstract

Immunotherapies are revolutionizing cancer care, producing durable responses and potentially cures in a subset of patients. However, response rates are low for most tumors, grade 3/4 toxicities are not uncommon, and our current understanding of tumor immunobiology is incomplete. While hundreds of immunomodulatory proteins in the tumor microenvironment shape the anti-tumor response, few of them can be reliably quantified. To address this need, we developed a multiplex panel of targeted proteomic assays targeting 52 peptides representing 46 proteins using peptide immunoaffinity enrichment coupled to multiple reaction monitoring-mass spectrometry. We validated the assays in tissue and plasma matrices, where performance figures of merit showed over 3 orders of dynamic range and median inter-day CVs of 5.2% (tissue) and 21% (plasma). A feasibility study in clinical biospecimens showed detection of 48/52 peptides in frozen tissue and 38/52 peptides in plasma. The assays are publicly available as a resource for the research community.

Keywords: cancer; correlative biomarkers; immuno-MRM; immunotherapy; mass spectrometry.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
Immuno-MRM enables highly multiplexed protein quantification. (A) The immuno-MRM assay workflow commences with generation of a protein lysate from the biospecimen of interest. Cleavable stable isotope labeled standards unique to each targeted peptide sequence are spiked into the sample at a known concentration. The protein mixture is converted to peptides by enzymatic digestion (Lys-C and trypsin). Custom monoclonal antibodies coupled to magnetic beads are used to enrich the endogenous peptides and labeled standards. The eluate is analyzed by multiple reaction monitoring-mass spectrometry, where analyte peptides and internal standards coelute with equivalent relative areas of monitored transitions. High sensitivity is achieved through analyte enrichment and optimization of mass spectrometer parameters for the targeted peptides. High specificity is maintained through optimal selection of fragment ion transitions. (B) Trypsin-mediated release of peptides was produced by overnight enzymatic digestion of proteins from a pool of cell lysates. The peak area ratios (light:heavy) for the 33 endogenous peptides detected were normalized to the maximum timepoint and plotted over time. Error bars are the standard deviation of three replicates. (C) Performance figures of merit for assays characterized in tissue matrix. (D) Performance figures of merit for assays characterized in plasma matrix. A representative response curve for the peptide VEIIATMK from CXCL10. Each concentration point was measured in triplicate. Distribution of R2 values from linear regression of the response curves. Distribution of lower limit of quantification (LOQ) where each point refers to concentration determined by the lowest point on the curve with less than 20% CV. Repeatability is characterized by the distribution of CV values for intra- (within day) and inter- (between day) variability at three concentrations, in addition to the measurement of endogenous peptide. Each point corresponds to the average %CV for a peptide measured at three concentrations, Low (Lo), Medium (Med), and High (Hi) in triplicate over five days (n=15 at each concentration for a peptide). Endogenous measurements refer to the intra (within day) and inter- (between day) variability of endogenous peptides detected above the LOQ in five replicates measured over 5 days (n = 25). Stability shows the distribution of %CV and relative percent difference for 4 conditions compared to immediate analysis: (i) stored at 8 hours at 4°C, (ii) 48 hours at 4°C, (iii) after two freeze-thaw cycles, and (iv) stored at -80°C for 5 weeks. For box plots, the line shows the median value, boxes show the inner quartiles, and the whiskers show 5-95% of data.
Figure 2
Figure 2
The immuno-MRM assays show detection in frozen tissues. (A) Frozen tissues were obtained for 110 tumors from 11 tumor types. The number of each type is indicated in the pie chart. (B) The relative fractions of adipose, lymphocytes, red blood cells, stroma, and tumor cells were plotted for tumors with available images (108 out of 110). Cellular microheterogeneity was determined by using the HALO algorithm. Each point represents an individual tumor. Box plots show median (line), inner quartiles (box), and 5-95% range (vertical lines). (C) Distribution of peptide detection plotted as a histogram, showing the number of peptides detected above LOQ across the 110 frozen tumors. (D) Heatmap showing unsupervised clustering of analytes detected above LOQ in > 50% of tumor specimens. Peak area ratios (light:heavy) were normalized for each peptide analyte, and the z-score was used for clustering. (E) Histogram showing correlation of protein expression measured by immuno-MRM with mRNA transcript level determined by RNAseq (52). The median is indicated by a dotted line (0.559).
Figure 3
Figure 3
Determination of sample requirements for detection in tissue. The number of analytes predicted for decreasing amounts of tissue was determined from the signal-to-noise ratio measured using 500 μg protein digest input. Error bars show the 95% confidence interval.
Figure 4
Figure 4
Utility of the assays for measurement of protein expression in plasma. (A) Plasma samples were obtained for 45 patients with breast, colorectal, or ovarian tumors, as indicated in the pie chart. (B) Distribution of peptide detection plotted as a histogram, showing the number of peptides detected above LOQ across the 45 plasmas using 100 μL aliquots of plasma as input. (C) Heatmap showing unsupervised clustering of analytes detected above LOQ in >50% of plasma samples. Peak area ratios (light:heavy) were normalized for each peptide analyte, and the z-score was used for clustering. (D) Histogram showing the correlation of protein expression levels in patients for whom both tissue and plasma samples were available.

Similar articles

Cited by

  • Pan-cancer proteogenomics characterization of tumor immunity.
    Petralia F, Ma W, Yaron TM, Caruso FP, Tignor N, Wang JM, Charytonowicz D, Johnson JL, Huntsman EM, Marino GB, Calinawan A, Evangelista JE, Selvan ME, Chowdhury S, Rykunov D, Krek A, Song X, Turhan B, Christianson KE, Lewis DA, Deng EZ, Clarke DJB, Whiteaker JR, Kennedy JJ, Zhao L, Segura RL, Batra H, Raso MG, Parra ER, Soundararajan R, Tang X, Li Y, Yi X, Satpathy S, Wang Y, Wiznerowicz M, González-Robles TJ, Iavarone A, Gosline SJC, Reva B, Robles AI, Nesvizhskii AI, Mani DR, Gillette MA, Klein RJ, Cieslik M, Zhang B, Paulovich AG, Sebra R, Gümüş ZH, Hostetter G, Fenyö D, Omenn GS, Cantley LC, Ma'ayan A, Lazar AJ, Ceccarelli M, Wang P; Clinical Proteomic Tumor Analysis Consortium. Petralia F, et al. Cell. 2024 Feb 29;187(5):1255-1277.e27. doi: 10.1016/j.cell.2024.01.027. Epub 2024 Feb 14. Cell. 2024. PMID: 38359819 Free PMC article.
  • Identification and functional analysis of senescent cells in the cardiovascular system using omics approaches.
    Mahoney SA, Dey AK, Basisty N, Herman AB. Mahoney SA, et al. Am J Physiol Heart Circ Physiol. 2023 Nov 1;325(5):H1039-H1058. doi: 10.1152/ajpheart.00352.2023. Epub 2023 Sep 1. Am J Physiol Heart Circ Physiol. 2023. PMID: 37656130 Free PMC article. Review.
  • Hormone Receptor-Positive Breast Cancer Sensitive to Pembrolizumab: Evidence of the Pathogenicity of the MLH1 Variant 1835del3.
    Kaplan HG, Whiteaker JR, Nelson B, Ivey RG, Lorentzen TD, Voytovich U, Zhao L, Corwin DJ, Resta R, Paulovich AG. Kaplan HG, et al. J Natl Compr Canc Netw. 2023 Aug 29;21(11):1110-1116. doi: 10.6004/jnccn.2023.7035. J Natl Compr Canc Netw. 2023. PMID: 37643636 Free PMC article.
  • A multiplexed assay for quantifying immunomodulatory proteins supports correlative studies in immunotherapy clinical trials.
    Whiteaker JR, Zhao L, Schoenherr RM, Huang D, Lundeen RA, Voytovich U, Kennedy JJ, Ivey RG, Lin C, Murillo OD, Lorentzen TD, Colantonio S, Caceres TW, Roberts RR, Knotts JG, Reading JJ, Perry CD, Richardson CW, Garcia-Buntley SS, Bocik W, Hewitt SM, Chowdhury S, Vandermeer J, Smith SD, Gopal AK, Ramchurren N, Fling SP, Wang P, Paulovich AG. Whiteaker JR, et al. Front Oncol. 2023 May 2;13:1168710. doi: 10.3389/fonc.2023.1168710. eCollection 2023. Front Oncol. 2023. PMID: 37205196 Free PMC article.
  • Blood Biomarkers for Healthy Aging.
    Ubaida-Mohien C, Tanaka T, Tian Q, Moore Z, Moaddel R, Basisty N, Simonsick EM, Ferrucci L. Ubaida-Mohien C, et al. Gerontology. 2023;69(10):1167-1174. doi: 10.1159/000530795. Epub 2023 Apr 25. Gerontology. 2023. PMID: 37166337 Free PMC article. Review.

References

    1. Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK, Gao J, et al. . The Next Decade of Immune Checkpoint Therapy. Cancer Discov (2021) 11(4):838–57. doi: 10.1158/2159-8290.CD-20-1680 - DOI - PubMed
    1. Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic Cancer Vaccines. Nat Rev Cancer (2021) 21(6):360–78. doi: 10.1038/s41568-021-00346-0 - DOI - PubMed
    1. Larson RC, Maus MV. Recent Advances and Discoveries in the Mechanisms and Functions of CAR T Cells. Nat Rev Cancer (2021) 21(3):145–61. doi: 10.1038/s41568-020-00323-z - DOI - PMC - PubMed
    1. Abdel-Wahab N, Shah M, Suarez-Almazor ME. Adverse Events Associated With Immune Checkpoint Blockade in Patients With Cancer: A Systematic Review of Case Reports. PloS One (2016) 11(7):e0160221. doi: 10.1371/journal.pone.0160221 - DOI - PMC - PubMed
    1. Perdigoto AL, Kluger H, Herold KC. Adverse Events Induced by Immune Checkpoint Inhibitors. Curr Opin Immunol (2021) 69:29–38. doi: 10.1016/j.coi.2021.02.002 - DOI - PMC - PubMed

Publication types

LinkOut - more resources