Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep;84(3):436-451.
doi: 10.1002/ana.25301.

Remodeled cortical inhibition prevents motor seizures in generalized epilepsy

Affiliations

Remodeled cortical inhibition prevents motor seizures in generalized epilepsy

Xiao Jiang et al. Ann Neurol. 2018 Sep.

Abstract

Objective: Deletions of CACNA1A, encoding the α1 subunit of CaV 2.1 channels, cause epilepsy with ataxia in humans. Whereas the deletion of Cacna1a in γ-aminobutyric acidergic (GABAergic) interneurons (INs) derived from the medial ganglionic eminence (MGE) impairs cortical inhibition and causes generalized seizures in Nkx2.1Cre ;Cacna1ac/c mice, the targeted deletion of Cacna1a in somatostatin-expressing INs (SOM-INs), a subset of MGE-derived INs, does not result in seizures, indicating a crucial role of parvalbumin-expressing (PV) INs. Here we identify the cellular and network consequences of Cacna1a deletion specifically in PV-INs.

Methods: We generated PVCre ;Cacna1ac/c mutant mice carrying a conditional Cacna1a deletion in PV neurons and evaluated the cortical cellular and network outcomes of this mutation by combining immunohistochemical assays, in vitro electrophysiology, 2-photon imaging, and in vivo video-electroencephalographic recordings.

Results: PVCre ;Cacna1ac/c mice display reduced cortical perisomatic inhibition and frequent absences but only rare motor seizures. Compared to Nkx2.1Cre ;Cacna1ac/c mice, PVCre ;Cacna1ac/c mice have a net increase in cortical inhibition, with a gain of dendritic inhibition through sprouting of SOM-IN axons, largely preventing motor seizures. This beneficial compensatory remodeling of cortical GABAergic innervation is mTORC1-dependent and its inhibition with rapamycin leads to a striking increase in motor seizures. Furthermore, we show that a direct chemogenic activation of cortical SOM-INs prevents motor seizures in a model of kainate-induced seizures.

Interpretation: Our findings provide novel evidence suggesting that the remodeling of cortical inhibition, with an mTOR-dependent gain of dendritic inhibition, determines the seizure phenotype in generalized epilepsy and that mTOR inhibition can be detrimental in epilepsies not primarily due to mTOR hyperactivation. Ann Neurol 2018;84:436-451.

PubMed Disclaimer

Comment in

  • Double agent mTOR.
    Danzer SC. Danzer SC. Epilepsy Curr. 2019 Jan;19(1):44-46. doi: 10.1177/1535759718822033. Epub 2019 Jan 30. Epilepsy Curr. 2019. PMID: 30838925 Free PMC article.

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources