Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Feb 19;17(1):53.
doi: 10.1186/s12943-018-0793-1.

EGFR-TKIs resistance via EGFR-independent signaling pathways

Affiliations
Review

EGFR-TKIs resistance via EGFR-independent signaling pathways

Qian Liu et al. Mol Cancer. .

Abstract

Tyrosine kinase inhibitors (TKIs)-treatments bring significant benefit for patients harboring epidermal growth factor receptor (EGFR) mutations, especially for those with lung cancer. Unfortunately, the majority of these patients ultimately develop to the acquired resistance after a period of treatment. Two central mechanisms are involved in the resistant process: EGFR secondary mutations and bypass signaling activations. In an EGFR-dependent manner, acquired mutations, such as T790 M, interferes the interaction between TKIs and the kinase domain of EGFR. While in an EGFR-independent manner, dysregulation of other receptor tyrosine kinases (RTKs) or abnormal activation of downstream compounds both have compensatory functions against the inhibition of EGFR through triggering phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling axes. Nowadays, many clinical trials aiming to overcome and prevent TKIs resistance in various cancers are ongoing or completed. EGFR-TKIs in accompany with the targeted agents for resistance-related factors afford a promising first-line strategy to further clinical application.

Keywords: Bypass signalings; Downstream compounds; Drug resistance; EGFR; ErbB; RTKs; TKIs.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Secondary RTKs-induced EGFR-TKIs resistance. EGFR could trigger downstream PI3K/Akt and MAPK signaling axes which in turn stimulate the transcription factors to drive the associated genes expression which are related with proliferation, angiogenesis, invasion and metastasis. TKIs inhibit EGFR-drived signal transduction by interacting with the tyrosine kinase domain of EGFR. Other RTKs are involved in the development of TKIs resistance via a EGFR-indepenfent way: 1. Amplification of MET activates PI3K through transactivating ErbB3; 2. HGF overexpression; 3. ErbB2 amplification; 4. ErbB3 activation; 5. IGF1R activation by IGF binding or IGFBP reduction; 6. AXL activation; 7. FGFR1 activation
Fig. 2
Fig. 2
Alternative downstream compounds-induced EGFR-TKIs resistance. 1. PTEN loss: suppressed HGR1 downregulates PTEN expression which in general inhibits the PI3K/Akt activation. 2. PIK3CA mutation-drived abnormal activation of PI3K pathway. 3. BRAF mutation-drived abnormal activation of MAPK signaling axis

Similar articles

Cited by

References

    1. Yu S, Li A, Liu Q, Yuan X, Xu H, Jiao D, et al. Recent advances of bispecific antibodies in solid tumors. J Hematol Oncol. 2017;10:155. doi: 10.1186/s13045-017-0522-z. - DOI - PMC - PubMed
    1. Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S, et al. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene. 2008;27:3944–3956. doi: 10.1038/onc.2008.19. - DOI - PMC - PubMed
    1. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–1134. doi: 10.1016/j.cell.2010.06.011. - DOI - PMC - PubMed
    1. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–137. doi: 10.1038/35052073. - DOI - PubMed
    1. Kampa-Schittenhelm KM, Heinrich MC, Akmut F, Rasp KH, Illing B, Dohner H, et al. Cell cycle-dependent activity of the novel dual PI3K-MTORC1/2 inhibitor NVP-BGT226 in acute leukemia. Mol Cancer. 2013;12:46. doi: 10.1186/1476-4598-12-46. - DOI - PMC - PubMed

Publication types

MeSH terms