Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2017 May 1;26(9):1706-1715.
doi: 10.1093/hmg/ddx077.

Compound heterozygous mutations in the gene PIGP are associated with early infantile epileptic encephalopathy

Affiliations
Case Reports

Compound heterozygous mutations in the gene PIGP are associated with early infantile epileptic encephalopathy

Devon L Johnstone et al. Hum Mol Genet. .

Abstract

There are over 150 known human proteins which are tethered to the cell surface via glycosylphosphatidylinositol (GPI) anchors. These proteins play a variety of important roles in development, and particularly in neurogenesis. Not surprisingly, mutations in the GPI anchor biosynthesis and remodeling pathway cause a number of developmental disorders. This group of conditions has been termed inherited GPI deficiencies (IGDs), a subgroup of congenital disorders of glycosylation; they present with variable phenotypes, often including seizures, hypotonia and intellectual disability. Here, we report two siblings with compound heterozygous variants in the gene phosphatidylinositol glycan anchor biosynthesis, class P (PIGP) (NM_153681.2: c.74T > C;p.Met25Thr and c.456delA;p.Glu153AsnFs*34). PIGP encodes a subunit of the enzyme that catalyzes the first step of GPI anchor biosynthesis. Both children presented with early-onset refractory seizures, hypotonia, and profound global developmental delay, reminiscent of other IGD phenotypes. Functional studies with patient cells showed reduced PIGP mRNA levels, and an associated reduction of GPI-anchored cell surface proteins, which was rescued by exogenous expression of wild-type PIGP. This work associates mutations in the PIGP gene with a novel autosomal recessive IGD, and expands our knowledge of the role of PIG genes in human development.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Supplementary concepts

Grants and funding