Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Oct;233(19-20):3473-501.
doi: 10.1007/s00213-016-4396-5. Epub 2016 Aug 28.

The effects of ecstasy on neurotransmitter systems: a review on the findings of molecular imaging studies

Affiliations
Review

The effects of ecstasy on neurotransmitter systems: a review on the findings of molecular imaging studies

Yosta Vegting et al. Psychopharmacology (Berl). 2016 Oct.

Abstract

Rationale: Ecstasy is a commonly used psychoactive drug with 3,4-methylenedioxymethamphetamine (MDMA) as the main content. Importantly, it has been suggested that use of MDMA may be neurotoxic particularly for serotonergic (5-hydroxytryptamine (5-HT)) neurons. In the past decades, several molecular imaging studies examined directly in vivo the effects of ecstasy/MDMA on neurotransmitter systems.

Objectives: The objective of the present study is to review the effects of ecstasy/MDMA on neurotransmitter systems as assessed by molecular imaging studies in small animals, non-human primates and humans.

Methods: A search in PubMed was performed. Eighty-eight articles were found on which inclusion and exclusion criteria were applied.

Results: Thirty-three studies met the inclusion criteria; all were focused on the 5-HT or dopamine (DA) system. Importantly, 9 out of 11 of the animal studies that examined the effects of MDMA on 5-HT transporter (SERT) availability showed a significant loss of binding potential. In human studies, this was the case for 14 out of 16 studies, particularly in heavy users. In abstinent users, significant recovery of SERT binding was found over time. Most imaging studies in humans that focused on the DA system did not find any significant effect of ecstasy/MDMA use.

Conclusions: Preclinical and clinical molecular imaging studies on the effects of ecstasy/MDMA use/administration on neurotransmitter systems show quite consistent alterations of the 5-HT system. Particularly, in human studies, loss of SERT binding was observed in heavy ecstasy users, which might reflect 5-HT neurotoxicity, although alternative explanations (e.g. down-regulation of the SERT) cannot be excluded.

Keywords: 3,4-Methylenedioxymethamphetamine; Dopamine; Ecstasy; MDMA; Neuroimaging; Neurotoxicity; PET; SPECT; Serotonin; fMRI.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Flowchart of the inclusion and exclusion of studies

Similar articles

Cited by

References

    1. Amoroso T (2015) The psychopharmacology of +/-3,4 methylenedioxymethamphetamine and its role in the treatment of posttraumatic stress disorder. J Psychoactive Drugs:1–8 - PubMed
    1. Banks ML, Czoty PW, Gage HD, Bounds MC, Garg PK, Garg S, Nader MA. Effects of cocaine and MDMA self-administration on serotonin transporter availability in monkeys. Neuropsychopharmacology. 2008;33:219–225. doi: 10.1038/sj.npp.1301420. - DOI - PMC - PubMed
    1. Battaglia G, Yeh SY, O’Hearn E, Molliver ME, Kuhar MJ, De Souza EB. 3,4-Methylenedioxymethamphetamine and 3,4-methylenedioxyamphetamine destroy serotonin terminals in rat brain: quantification of neurodegeneration by measurement of [3H]paroxetine-labeled serotonin uptake sites. J Pharmacol Exp Ther. 1987;242:911–916. - PubMed
    1. Battaglia G, Brooks BP, Kulsakdinun C, De Souza EB. Pharmacologic profile of MDMA (3,4-methylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol. 1988;149:159–163. doi: 10.1016/0014-2999(88)90056-8. - DOI - PubMed
    1. Baumann MH, Wang X, Rothman RB. 3,4-Methylenedioxymethamphetamine (MDMA) neurotoxicity in rats: a reappraisal of past and present findings. Psychopharmacology. 2007;189:407–424. doi: 10.1007/s00213-006-0322-6. - DOI - PMC - PubMed

MeSH terms