Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Jul;16(7):883-90.
doi: 10.1016/j.sleep.2015.03.009. Epub 2015 Apr 14.

EEG topography during sleep inertia upon awakening after a period of increased homeostatic sleep pressure

Affiliations

EEG topography during sleep inertia upon awakening after a period of increased homeostatic sleep pressure

Maurizio Gorgoni et al. Sleep Med. 2015 Jul.

Abstract

Objective: Behavioral and physiological indexes of high sleep inertia (SI) characterize the awakening from recovery (REC) sleep after prolonged wakefulness, but the associated electroencephalogram (EEG) topography has never been investigated. Here, we compare the EEG topography following the awakening from baseline (BSL) and REC sleep.

Methods: We have recorded the EEG waking activity of 26 healthy subjects immediately after the awakening from BSL sleep and from REC sleep following 40 h of prolonged wakefulness. In both BSL and REC conditions, 12 subjects were awakened from stage 2 sleep, and 14 subjects from rapid eye movement (REM) sleep. The full-scalp waking EEG (eyes closed) was recorded after all awakenings.

Results: Subjects awakened from REC sleep showed a reduction of fronto-central alpha and beta-1 activities, while no significant effects of the sleep stage of awakening have been observed. Positive correlations between pre- and post-awakening EEG modifications following REC sleep have been found in the posterior and lateral cortices in the frequency ranges from theta to beta-2 and (only for REM awakenings) extending to the fronto-central regions in the beta-1 band, and in the midline central and parietal derivations for the alpha and delta bands, respectively.

Conclusions: These findings suggest that the higher SI after REC sleep may be due to the fronto-central decrease of alpha and beta-1 activity and to the persistence of the sleep EEG features after awakening in the posterior, lateral, and fronto-central cortices, without influences of the sleep stage of awakening.

Keywords: Awakening; Cortical topography; EEG power; Local EEG changes; Sleep deprivation; Sleep inertia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources