Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jan 29;4(4):386-98.
doi: 10.7150/thno.8006. eCollection 2014.

Nanobody: the "magic bullet" for molecular imaging?

Affiliations
Review

Nanobody: the "magic bullet" for molecular imaging?

Rubel Chakravarty et al. Theranostics. .

Abstract

Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases.

Keywords: Nanobody; arthritis; atherosclerosis; cancer; molecular imaging; positron emission tomography (PET).

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Figures

Figure 1
Figure 1
A schematic representation of nanobody and antibody domains. Adapted from .
Figure 2
Figure 2
Nanobody-based imaging of EGFR expression. Transverse, coronal, and sagittal views of SPECT/CT images of mice bearing A431 tumor injected with 99mTc-7C12 (A) or 99mTc-7D12 (B). Images were acquired at 1 h after injection. Adapted from .
Figure 3
Figure 3
Nanobody-based imaging of HER-2 expression. (A) Transverse and coronal views of SPECT/CT images of HER-2 positive SKOV3 tumor-bearing mice at 1 h post-injection of 99mTc-2Rs15d. (B) PET/CT images of rats bearing SKOV3 (left) or HER-2 negative MDA-MB-435D (right) tumor xenografts at 1 h post-injection of 68Ga-2Rs15d. (C) In vivo optical imaging of SKBR3 tumor-bearing mice at 4 h post-injection of HER-2 specific (11A4, 18C3 or 22G12) or negative control (R2) nanobodies conjugated to IRDye800CW (abbreviated as IR). Tumors are indicated with red arrow and kidneys with green arrow. Adapted from , , .
Figure 4
Figure 4
Nanobody-based imaging of MMR expression. (A) Coronal and transverse views of SPECT/CT images of 3LL tumor-bearing wide-type (WT) or MMR knockout (MMR-/-) mice at 3 h post-injection of 99mTc-labeled BCII10 control nanobody (Nb) or anti-MMR (α-MMR) nanobody. (B) SPECT/CT images of mice showing signs of arthritis in both hind limbs at 3 h post-injection of 99mTc-labeled α-MMR nanobody or BCII10 control nanobody. Tracer accumulation of 99mTc-labeled α-MMR nanobody was evident in knees, ankles, and metatarsal joints (indicated by arrows), but not the control nanobody. Adapted from , .
Figure 5
Figure 5
Nanobody-based imaging of VCAM-1 expression. (A) SPECT/CT images of atherosclerotic lesions in ApoE-deficient mice injected with 99mTc-cAbVCAM1-5 alone (no competition) or with a 100-fold excess of unlabeled cAbVCAM1-1 (competition). Competition resulted in significant decrease of tracer uptake in the liver, lymphoid tissues, and atherosclerotic lesions, thereby demonstrating VCAM-1 specificity. (B) Transverse B-mode ultrasound images of MC38 tumors overlaid with contrast-enhanced signal at 10 min post-injection of either μB-cAbVCAM1-5 or a non-targeting control μB-cAbGFP4. Adapted from , .

Similar articles

Cited by

References

    1. Cassidy PJ, Radda GK. Molecular imaging perspectives. J R Soc Interface. 2005;2:133–44. - PMC - PubMed
    1. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2:683–93. - PubMed
    1. Herschman HR. Molecular imaging: looking at problems, seeing solutions. Science. 2003;302:605–8. - PubMed
    1. Baum RP, Kulkarni HR. THERANOSTICS: From Molecular Imaging Using Ga-68 Labeled Tracers and PET/CT to Personalized Radionuclide Therapy - The Bad Berka Experience. Theranostics. 2012;2:437–47. - PMC - PubMed
    1. Velikyan I. Molecular imaging and radiotherapy: theranostics for personalized patient management. Theranostics. 2012;2:424–6. - PMC - PubMed

Publication types