Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011:210:59-110.
doi: 10.1007/978-1-4419-7615-4_3.

Illicit drugs: contaminants in the environment and utility in forensic epidemiology

Affiliations
Review

Illicit drugs: contaminants in the environment and utility in forensic epidemiology

Christian G Daughton. Rev Environ Contam Toxicol. 2011.

Abstract

The published literature that addresses the many facets of pharmaceutical ingredients as environmental contaminants has grown exponentially since the 1990s. Although there are several thousand active ingredients used in medical pharmaceuticals worldwide, illicit drug ingredients (IDIs) have generally been excluded from consideration. Medicinal and illicit drugs have been treated separately in environmental research even though they pose many of the same concerns regarding the potential for both human and ecological exposure. The overview presented here covers the state of knowledge up until mid-2010 regarding the origin, occurrence, fate, and potential for biological effects of IDIs in the environment. Similarities exist with medical pharmaceuticals, particularly with regard to the basic processes by which these ingredients enter the environment--excretion of unmetabolized residues (including via sweat), bathing, disposal, and manufacturing. The features of illicit drugs that distinguish them from medical pharmaceuticals are discussed. Demarcations between the two are not always clear, and a certain degree of overlap adds additional confusion as to what exactly defines an illicit drug; indeed, medical pharmaceuticals diverted from the legal market or used for non-medicinal purposes ar also captured in discussions of illicit drugs. Also needing consideration as par tof the universe of IDIs are the numerous adulterants and synthesis impurities often encountered in these very impure preparations. many of these extraneous chemicals have high biological activity themselves. In contract to medical pharmaceuticals, comparatively little is know about the fate and effects of IDIs in the environment. Environmental surveys for IDIs have revealed their presence in sewage wastewaters, raw sewage sludge and processed sludge (biosolids), and drinking water. Nearly nothing is known, however, regarding wildlife exposure to IDIs, especially aquatic exposure such as indicated by bioconcentration i tissues. In contrast to pharmaceuticals, chemical monitoring surveys have revealed the presence of certain IDIs in air and monetary currencies--the latter being of interest for the forensic tracking of money used in drug trafficking. Another unknown with regard to IDIs is the accuracy of current knowledge regarding the complete scope of chemical identities of the numerous types of IDIs in actual use (particularly some of the continually evolving designer drugs new to forensic chemistry) as well as the total quantities being trafficked, consumed, or disposed. The major aspect unique to the study of IDI's in the environment is making use of their presence in the environment as a tool to obtain better estimates of the collective usage of illicit drugs across entire communities. First proposed in 2001, but under investigation with field applications only since 2005, this new modeling approach for estimating drug usage by monitoring the concentrations of IDIs (or certain unique metabolites) in untreated sewage has potential as an additional source of data to augment or corroborate the information-collection ability of conventional written and oral surveys of drug-user populations. This still evolving monitoring tool has been called "sewer epidemiology" but is referred to in this chapter by a more descriptive proposed term "FEUDS" (Forensic Epidemiology Using Drugs in Sewage). The major limitation of FEUDS surrounds the variables involved at various steps performed in FEUDS calculations. These variables are summarized and span sampling and chemical analysis to the final numeric calculations, which particularly require a better understanding of IDI pharmacokinetics than currently exists. Although little examined in the literature, the potential for abuse of FEUDS as a tool in law enforcement is briefly discussed. Finally, the growing interest in FEUDS as a methodological approach for estimating collective public usage of illicit drugs points to the feasibility of mining other types of chemical information from sewage. On the horizon is the potential for "sewage information mining" (SIM) as a general approach for measuring a nearly limitless array of biochemical markers that could serve as collective indicators of the specific or general status of public health or disease at the community-wide level. SIM may create the opportunity to view communities from a new perspective--"communities as the patient." This could potentially lead to the paradigm of combining human and ecological communities as a single patient--as an interconnected whole.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources