Related topics: protein · cells · bacteria · chemical reactions · cancer

Scientists replicate enzyme that captures carbon

Scientists from King's College London have recreated the active site of Acetyl-CoA Synthase, an enzyme involved in capturing carbon from the atmosphere. The research, carried out in collaboration with Imperial College London, ...

New mRNA technology turns cells into long-lasting drug factories

A team of researchers has established a ribonucleic acid (RNA)-based method that drives cells in the body to produce therapeutic proteins and secrete them into the bloodstream. The approach could potentially extend the lifespan ...

Engineered biocatalyst for making 'drop-in' biofuels

Researchers at the Department of Inorganic and Physical Chemistry (IPC), Indian Institute of Science (IISc), have developed an enzymatic platform that can efficiently transform naturally abundant and inexpensive fatty acids ...

page 1 from 40

Enzyme

Enzymes are biomolecules that catalyze (i.e., increase the rates of) chemical reactions. Nearly all known enzymes are proteins. However, certain RNA molecules can be effective biocatalysts too. These RNA molecules have come to be known as ribozymes. In enzymatic reactions, the molecules at the beginning of the process are called substrates, and the enzyme converts them into different molecules, called the products. Almost all processes in a biological cell need enzymes to occur at significant rates. Since enzymes are selective for their substrates and speed up only a few reactions from among many possibilities, the set of enzymes made in a cell determines which metabolic pathways occur in that cell.

Like all catalysts, enzymes work by lowering the activation energy (Ea or ΔG‡) for a reaction, thus dramatically increasing the rate of the reaction. Most enzyme reaction rates are millions of times faster than those of comparable un-catalyzed reactions. As with all catalysts, enzymes are not consumed by the reactions they catalyze, nor do they alter the equilibrium of these reactions. However, enzymes do differ from most other catalysts by being much more specific. Enzymes are known to catalyze about 4,000 biochemical reactions. A few RNA molecules called ribozymes catalyze reactions, with an important example being some parts of the ribosome. Synthetic molecules called artificial enzymes also display enzyme-like catalysis.

Enzyme activity can be affected by other molecules. Inhibitors are molecules that decrease enzyme activity; activators are molecules that increase activity. Many drugs and poisons are enzyme inhibitors. Activity is also affected by temperature, chemical environment (e.g., pH), and the concentration of substrate. Some enzymes are used commercially, for example, in the synthesis of antibiotics. In addition, some household products use enzymes to speed up biochemical reactions (e.g., enzymes in biological washing powders break down protein or fat stains on clothes; enzymes in meat tenderizers break down proteins, making the meat easier to chew).

This text uses material from Wikipedia, licensed under CC BY-SA