Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Contagion dynamics on higher-order networks

Abstract

A paramount research challenge in network and complex systems science is to understand the dissemination of diseases, information and behaviour. The COVID-19 pandemic and the proliferation of misinformation are examples that highlight the importance of these dynamic processes. In recent years, it has become clear that studies of higher-order networks may unlock new avenues for investigating such processes. Despite being in its early stages, the examination of social contagion in higher-order networks has witnessed a surge of research and concepts, revealing different functional forms for the spreading dynamics and offering novel insights. This Review presents a focused overview of this body of literature and proposes a unified formalism that covers most of these forms. The goal is to underscore the similarities and distinctions among various models to motivate further research on the general and universal properties of such models. We also highlight that although the path for additional theoretical exploration appears clear, the empirical validation of these models through data or experiments remains scant, with an unsettled roadmap as of today. We therefore conclude with some perspectives aimed at providing possible research directions that could contribute to a better understanding of this class of dynamical processes, both from a theoretical and a data-oriented point of view.

Key points

  • Contagion models in higher-order systems are motivated by problems relating to social interactions and to epidemics. There are various models and their interpretation changes depending on the context, but their mathematical formulation is similar and many models share key features and behaviours.

  • Identifying these general and specific properties of models will improve our understanding of higher-order systems as a whole. In this Review, we propose a unified formalism that covers most of the models in the literature.

  • Neglecting higher-order effects could completely change the process. For example, a discontinuous transition in a higher-order system could be perceived as continuous in a projected pairwise system.

  • Data validation and social experiments on a large scale are still lacking. Although there are structural data for some systems, for many dynamical processes data remain insufficient.

  • The study of contagion models in higher-order systems is an inherently interdisciplinary endeavour, in which physics and mathematics can provide new insights and interpretations for social sciences and epidemiology, among others.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different types of interactions in higher-order networks.
Fig. 2: Susceptible–infected–susceptible prevalence ρ in the pairwise case according to the most common approaches.

Similar content being viewed by others

References

  1. Barrat, A., Barthélemy, M. & Vespignani, A. Dynamical Processes on Complex Networks (Cambridge Univ. Press, 2008).

  2. Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  3. de Arruda, G. F., Rodrigues, F. A. & Moreno, Y. Fundamentals of spreading processes in single and multilayer complex networks. Phys. Rep. 756, 1–59 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  4. de Arruda, G. F., Petri, G. & Moreno, Y. Social contagion models on hypergraphs. Phys. Rev. Res. 2, 023032 (2020).

    Article  Google Scholar 

  5. Daley, D. J. & Kendall, D. G. Epidemics and rumours. Nature 204, 1118 (1964).

    Article  ADS  Google Scholar 

  6. Maki, D. P. & Thompson, M. Mathematical Models and Applications (Prentice-Hall Inc., 1973).

  7. Battiston, F. et al. Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  8. Bianconi, G. Higher-Order Networks (Cambridge Univ. Press, 2021).

  9. Torres, L., Blevins, A. S., Bassett, D. & Eliassi-Rad, T. The why, how, and when of representations for complex systems. SIAM Rev. 63, 435–485 (2021).

    Article  MathSciNet  Google Scholar 

  10. Battiston, F. et al. The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021).

    Article  Google Scholar 

  11. Bick, C., Gross, E., Harrington, H. A. & Schaub, M. T. What are higher-order networks? SIAM Rev. 65, 686–731 (2023).

    Article  MathSciNet  Google Scholar 

  12. Boccaletti, S. et al. The structure and dynamics of networks with higher order interactions. Phys. Rep. 1018, 1–64 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  13. Kim, J., Lee, D.-S. & Goh, K.-I. Contagion dynamics on hypergraphs with nested hyperedges. Phys. Rev. E 108, 034313 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  14. Centola, D. & Baronchelli, A. The spontaneous emergence of conventions: an experimental study of cultural evolution. Proc. Natl Acad. Sci. USA 112, 1989–1994 (2015).

    Article  ADS  Google Scholar 

  15. Galantucci, B. An experimental study of the emergence of human communication systems. Cogn. Sci. 29, 737–767 (2005).

    Article  Google Scholar 

  16. Centola, D. The spread of behavior in an online social network experiment. Science 329, 1194–1197 (2010).

    Article  ADS  Google Scholar 

  17. Hodas, N. O. & Lerman, K. The simple rules of social contagion. Sci. Rep. 4, 4343 (2014).

    Article  ADS  Google Scholar 

  18. Aral, S. & Nicolaides, C. Exercise contagion in a global social network. Nat. Commun. 8, 14753 (2017).

    Article  ADS  Google Scholar 

  19. Christakis, N. A. & Fowler, J. H. The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357, 370–379 (2007).

    Article  Google Scholar 

  20. Sugden, R. Spontaneous order. J. Econ. Perspect. 3, 85–97 (1989).

    Article  Google Scholar 

  21. Bikhchandani, S., Hirshleifer, D. & Welch, I. A theory of fads, fashion, custom, and cultural change as informational cascades. J. Pol. Econ. 100, 992–1026 (1992).

    Article  Google Scholar 

  22. Ehrlich, P. R. & Levin, S. A. The evolution of norms. PLOS Biol. 3, e194 (2005).

    Article  Google Scholar 

  23. Young, H. P. The evolution of social norms. Annu. Rev. Econ. 7, 359–387 (2015).

    Article  Google Scholar 

  24. Everall, J. P., Donges, J. F. & Otto, I. M. The Pareto effect in tipping social networks: from minority to majority. EGUsphere 2023, 1–38 (2023).

    Google Scholar 

  25. Baronchelli, A. The emergence of consensus: a primer. R. Soc. Open Sci. 5, 172189 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  26. Milkoreit, M. et al. Defining tipping points for social–ecological systems scholarship — an interdisciplinary literature review. Environ. Res. Lett. 13, 033005 (2018).

    Article  ADS  Google Scholar 

  27. Xie, J. et al. Social consensus through the influence of committed minorities. Phys. Rev. E 84, 011130 (2011).

    Article  ADS  Google Scholar 

  28. Mistry, D., Zhang, Q., Perra, N. & Baronchelli, A. Committed activists and the reshaping of status-quo social consensus. Phys. Rev. E 92, 042805 (2015).

    Article  ADS  Google Scholar 

  29. Niu, X., Doyle, C., Korniss, G. & Szymanski, B. K. The impact of variable commitment in the naming game on consensus formation. Sci. Rep. 7, 41750 (2017).

    Article  ADS  Google Scholar 

  30. Kanter, R. M. Some effects of proportions on group life: skewed sex ratios and responses to token women. Am. J. Sociol. 82, 965—990 (1977).

    Article  Google Scholar 

  31. Dahlerup, D. From a small to a large minority: women in Scandinavian politics. Scand. Political Stud. 11, 275–298 (1988).

    Article  Google Scholar 

  32. Grey, S. Numbers and beyond: the relevance of critical mass in gender research. Polit. Gender 2, 492–502 (2006).

    Google Scholar 

  33. Cencetti, G., Battiston, F., Lepri, B. & Karsai, M. Temporal properties of higher-order interactions in social networks. Sci. Rep. 11, 7028 (2021).

    Article  ADS  Google Scholar 

  34. O. Szabo, R., Chowdhary, S., Deritei, D. & Battiston, F. The anatomy of social dynamics in escape rooms. Sci. Rep. 12, 10498 (2022).

    Article  Google Scholar 

  35. Centola, D., Becker, J., Brackbill, D. & Baronchelli, A. Experimental evidence for tipping points in social convention. Science 360, 1116–1119 (2018).

    Article  ADS  Google Scholar 

  36. Amato, R., Lacasa, L., Díaz-Guilera, A. & Baronchelli, A. The dynamics of norm change in the cultural evolution of language. Proc. Natl Acad. Sci. USA 115, 8260–8265 (2018).

    Article  ADS  Google Scholar 

  37. Diani, M. The concept of social movement. Sociol. Rev. 40, 1–25 (1992).

    Article  Google Scholar 

  38. Iacopini, I., Petri, G., Baronchelli, A. & Barrat, A. Group interactions modulate critical mass dynamics in social convention. Commun. Phys. 5, 64 (2022).

    Article  Google Scholar 

  39. Granovetter, M. Threshold models of collective behavior. Am. J. Sociol. 83, 1420–1443 (1978).

    Article  Google Scholar 

  40. Iacopini, I., Petri, G., Barrat, A. & Latora, V. Simplicial models of social contagion. Nat. Commun. 10, 2485 (2019).

    Article  ADS  Google Scholar 

  41. Jhun, B., Jo, M. & Kahng, B. Simplicial SIS model in scale-free uniform hypergraph. J. Stat. Mech. Theory Exp. 2019, 123207 (2019).

    Article  MathSciNet  Google Scholar 

  42. Ferraz de Arruda, G., Tizzani, M. & Moreno, Y. Phase transitions and stability of dynamical processes on hypergraphs. Commun. Phys. 4, 24 (2021).

    Article  Google Scholar 

  43. Barrat, A., Ferraz de Arruda, G., Iacopini, I. & Moreno, Y. Social Contagion on Higher-Order Structures 329–346 (Springer, 2022).

  44. Alvarez-Rodriguez, U. et al. Evolutionary dynamics of higher-order interactions in social networks. Nat. Hum. Behav. 5, 586–595 (2021).

    Article  Google Scholar 

  45. Higham, D. J. & De Kergorlay, H.-L. Epidemics on hypergraphs: spectral thresholds for extinction. Proc. R. Soc. A 477, 20210232 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  46. Higham, D. J. & de Kergorlay, H.-L. Mean field analysis of hypergraph contagion models. SIAM J. Appl. Math. 82, 1987–2007 (2022).

    Article  MathSciNet  Google Scholar 

  47. John Higham, D. & de Kergorlay, H.-L. Disease extinction for susceptible–infected–susceptible models on dynamic graphs and hypergraphs. Chaos Interdiscip. J. Nonlinear Sci. 32, 083131 (2022).

    Article  MathSciNet  Google Scholar 

  48. Kim, J.-H. & Goh, K.-I. Higher-order components dictate higher-order contagion dynamics in hypergraphs. Phys. Rev. Lett. 132, 087401 (2024).

    Article  ADS  Google Scholar 

  49. Westley, F. et al. Tipping toward sustainability: emerging pathways of transformation. AMBIO 40, 762–780 (2011).

    Article  ADS  Google Scholar 

  50. David Tàbara, J. et al. Positive tipping points in a rapidly warming world. Curr. Opin. Environ. Sustain. 31, 120–129 (2018).

    Article  Google Scholar 

  51. Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).

    Article  ADS  Google Scholar 

  52. Otto, I. M. et al. Social tipping dynamics for stabilizing Earth’s climate by 2050. Proc. Natl Acad. Sci. USA 117, 2354–2365 (2020).

    Article  ADS  Google Scholar 

  53. Lenton, T. M. Tipping positive change. Philos. Trans. R. Soc. B 375, 20190123 (2020).

    Article  Google Scholar 

  54. Bi, Q. et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect. Dis. 20, 911–919 (2020).

    Article  Google Scholar 

  55. Sun, K. et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science 371, eabe2424 (2021).

    Article  ADS  Google Scholar 

  56. Ajelli, M., Poletti, P., Melegaro, A. & Merler, S. The role of different social contexts in shaping influenza transmission during the 2009 pandemic. Sci. Rep. 4, 1–7 (2014).

    Article  Google Scholar 

  57. Zhao, Y. et al. Quantifying human mixing patterns in Chinese provinces outside Hubei after the 2020 lockdown was lifted. BMC Infect. Dis. 22, 1–10 (2022).

    Article  Google Scholar 

  58. le Polain de Waroux, O. et al. Identifying human encounters that shape the transmission of Streptococcus pneumoniae and other acute respiratory infections. Epidemics 25, 72–79 (2018).

    Article  Google Scholar 

  59. Althouse, B. M. et al. Superspreading events in the transmission dynamics of SARS-CoV-2: opportunities for interventions and control. PLoS Biol. 18, e3000897 (2020).

    Article  Google Scholar 

  60. St-Onge, G., Sun, H., Allard, A., Hébert-Dufresne, L. & Bianconi, G. Universal nonlinear infection kernel from heterogeneous exposure on higher-order networks. Phys. Rev. Lett. 127, 158301 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  61. Wang, C. C. et al. Airborne transmission of respiratory viruses. Science 373, eabd9149 (2021).

    Article  ADS  Google Scholar 

  62. Tang, J. W. et al. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Hosp. Infect. 110, 89–96 (2021).

    Article  Google Scholar 

  63. Robles-Romero, J. M., Conde-Guillén, G., Safont-Montes, J. C., García-Padilla, F. M. & Romero-Martín, M. Behaviour of aerosols and their role in the transmission of SARS-CoV-2: a scoping review. Rev. Med. Virol. 32, e2297 (2022).

    Article  Google Scholar 

  64. Kohanski, M. A., Lo, L. J. & Waring, M. S. Review of indoor aerosol generation, transport, and control in the context of COVID-19. Int. Forum Allergy Rhinol. 10, 1173–1179 (2020).

    Article  Google Scholar 

  65. Morawska, L., Buonanno, G., Mikszewski, A. & Stabile, L. The physics of respiratory particle generation, fate in the air, and inhalation. Nat. Rev. Phys. 4, 723–734 (2022).

    Article  Google Scholar 

  66. Kleynhans, J. et al. Association of close-range contact patterns with SARS-CoV-2: a household transmission study. eLife 12, e84753 (2023).

    Article  Google Scholar 

  67. Hu, H., Nigmatulina, K. & Eckhoff, P. The scaling of contact rates with population density for the infectious disease models. Math. Biosci. 244, 125–134 (2013).

    Article  MathSciNet  Google Scholar 

  68. Silk, M. J., Wilber, M. Q. & Fefferman, N. H. Capturing complex interactions in disease ecology with simplicial sets. Ecol. Lett. 25, 2217–2231 (2022).

    Article  Google Scholar 

  69. Thompson, H. A. et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) setting-specific transmission rates: a systematic review and meta-analysis. Clin. Infect. Dis. 73, e754–e764 (2021).

    Article  Google Scholar 

  70. Qian, H. et al. Indoor transmission of SARS-CoV-2. Indoor Air 31, 639–645 (2021).

    Article  Google Scholar 

  71. Koh, W. C. et al. What do we know about SARS-CoV-2 transmission? A systematic review and meta-analysis of the secondary attack rate and associated risk factors. PLoS ONE 15, e0240205. (2020).

    Article  Google Scholar 

  72. Tsang, T. K., Lau, L. L. H., Cauchemez, S. & Cowling, B. J. Household transmission of influenza virus. Trends Microbiol. 24, 123 (2016).

    Article  Google Scholar 

  73. Mousa, A. et al. Social contact patterns and implications for infectious disease transmission — a systematic review and meta-analysis of contact surveys. eLife 10, e70294 (2021).

    Article  Google Scholar 

  74. Mistry, D. et al. Inferring high-resolution human mixing patterns for disease modeling. Nat. Commun. 12, 3–23 (2021).

    Article  ADS  Google Scholar 

  75. Pollán, M. et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet 396, 535–544 (2020).

    Article  Google Scholar 

  76. Zachary J. Madewell, P. Factors associated with household transmission of SARS-CoV-2: an updated systematic review and meta-analysis. JAMA Netw. Open 4, e2122240 (2021).

    Article  Google Scholar 

  77. Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).

    Article  ADS  Google Scholar 

  78. Aleta, A. et al. Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas. Proc. Natl Acad. Sci. USA 119, e2112182119 (2022).

    Article  Google Scholar 

  79. Tariq, A. et al. Real-time monitoring the transmission potential of COVID-19 in Singapore, March 2020. BMC Med. 18, 1–14 (2020).

    Article  Google Scholar 

  80. Adam, D. C. et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. 26, 1714–1719 (2020).

    Article  Google Scholar 

  81. Laxminarayan, R. et al. Epidemiology and transmission dynamics of COVID-19 in two Indian states. Science 370, 691–697 (2020).

    Article  ADS  Google Scholar 

  82. Cooper, L. et al. Pareto rules for malaria super-spreaders and super-spreading. Nat. Commun. 10, 3939 (2019).

    Article  ADS  Google Scholar 

  83. Leung, N. H. L. et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 26, 676–680 (2020).

    Article  Google Scholar 

  84. Chu, D. K. et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 395, 1973–1987 (2020).

    Article  Google Scholar 

  85. Lai, A. C. K., Poon, C. K. M. & Cheung, A. C. T. Effectiveness of facemasks to reduce exposure hazards for airborne infections among general populations. J. R. Soc. Interface 9, 938–948 (2012).

    Article  Google Scholar 

  86. Badillo-Goicoechea, E. et al. Global trends and predictors of face mask usage during the COVID-19 pandemic. BMC Public Health 21, 2099 (2021).

    Article  Google Scholar 

  87. Lu, J. G., Jin, P. & English, A. S. Collectivism predicts mask use during COVID-19. Proc. Natl Acad. Sci. USA 118, e2021793118 (2021).

    Article  Google Scholar 

  88. Scheid, J. L., Lupien, S. P., Ford, G. S. & West, S. L. Commentary: physiological and psychological impact of face mask usage during the COVID-19 pandemic. Int. J. Environ. Res. Public Health 17, 6655 (2020).

    Article  Google Scholar 

  89. Betsch, C. et al. Social and behavioral consequences of mask policies during the COVID-19 pandemic. Proc. Natl Acad. Sci. USA 117, 21851–21853 (2020).

    Article  ADS  Google Scholar 

  90. Bir, C. & Widmar, N. O. Social pressure, altruism, free-riding, and non-compliance in mask wearing by U.S. residents in response to COVID-19 pandemic. Soc. Sci. Humanit. Open 4, 100229 (2021).

    Google Scholar 

  91. Dhanani, L. Y. & Franz, B. A meta-analysis of COVID-19 vaccine attitudes and demographic characteristics in the United States. Public Health 207, 31–38 (2022).

    Article  Google Scholar 

  92. Cascini, F., Pantovic, A., Al-Ajlouni, Y., Failla, G. & Ricciardi, W. Attitudes, acceptance and hesitancy among the general population worldwide to receive the COVID-19 vaccines and their contributing factors: a systematic review. eClinicalMedicine 40, 101113 (2021).

    Article  Google Scholar 

  93. Lazer, D. et al. The COVID States Project #43: COVID-19 vaccine rates and attitudes among Americans. Preprint at https://doi.org/10.31219/osf.io/rnw8z (2021).

  94. Demers, A. et al. Epidemic algorithms for replicated database maintenance. In Proc. 6th Annual ACM Symposium on Principles of Distributed Computing, PODC ’87 1–12 (Association for Computing Machinery, 1987).

  95. Montresor, A. Gossip and Epidemic Protocols 1–15 (John Wiley & Sons, Ltd, 2017).

  96. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M. & van Steen, M. Gossip-based peer sampling. ACM Trans. Comput. Syst. 25, 8–es (2007).

    Article  Google Scholar 

  97. Ripeanu, M. & Foster, I. T. Mapping the Gnutella network: macroscopic properties of large-scale peer-to-peer systems. In Revised Papers from the First International Workshop on Peer-to-Peer Systems, IPTPS ’01, 85–93 (Springer, 2002).

  98. Koshy, P., Koshy, D. & McDaniel, P. An analysis of anonymity in bitcoin using p2p network traffic. in Financial Cryptography and Data Security (eds Christin, N. & Safavi-Naini, R.) 469–485 (Springer, 2014).

  99. Misic, J., Misic, V. B., Chang, X., Motlagh, S. G. & Ali, M. Z. Block delivery time in Bitcoin distribution network. In ICC 2019 — 2019 IEEE International Conference on Communications (ICC) 1–7 (2019).

  100. Kiffer, L., Salman, A., Levin, D., Mislove, A. & Nita-Rotaru, C. Under the hood of the Ethereum gossip protocol. In Financial Cryptography and Data Security (eds Borisov, N. & Diaz, C.) 437–456 (Springer, 2021).

  101. Zhang, H., Song, L. & Han, Z. Radio resource allocation for device-to-device underlay communication using hypergraph theory. IEEE Trans. Wirel. Commun. 15, 4852–4861 (2016).

    Google Scholar 

  102. Zhang, H., Song, L., Li, Y. & Li, G. Y. Hypergraph theory: applications in 5G heterogeneous ultra-dense networks. IEEE Commun. Mag. 55, 70–76 (2017).

    Article  Google Scholar 

  103. Sun, Y. et al. Distributed channel access for device-to-device communications: a hypergraph-based learning solution. IEEE Commun. Lett. 21, 180–183 (2017).

    Article  Google Scholar 

  104. Nyasulu, T. & Crawford, D. H. Comparison of graph-based and hypergraph-based models for wireless network coexistence. In 2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom) 203–208 (IEEE, 2021).

  105. Kiss, I. Z., Iacopini, I., Simon, P. L. & Georgiou, N. Insights from exact social contagion dynamics on networks with higher-order structures. J. Complex Netw. 11, cnad044 (2023).

    Article  MathSciNet  Google Scholar 

  106. Ferraz de Arruda, G., Petri, G., Rodriguez, P. M. & Moreno, Y. Multistability, intermittency, and hybrid transitions in social contagion models on hypergraphs. Nat. Commun. 14, 1375 (2023).

    Article  ADS  Google Scholar 

  107. Bodó, Á., Katona, G. Y. & Simon, P. L. SIS epidemic propagation on hypergraphs. Bull. Math. Biol. 78, 713–735 (2016).

    Article  MathSciNet  Google Scholar 

  108. Landry, N. W. & Restrepo, J. G. The effect of heterogeneity on hypergraph contagion models. Chaos Interdiscip. J. Nonlinear Sci. 30, 103117 (2020).

    Article  MathSciNet  Google Scholar 

  109. St-Onge, G., Thibeault, V., Allard, A., Dubé, L. J. & Hébert-Dufresne, L. Social confinement and mesoscopic localization of epidemics on networks. Phys. Rev. Lett. 126, 098301 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  110. St-Onge, G., Thibeault, V., Allard, A., Dubé, L. J. & Hébert-Dufresne, L. Master equation analysis of mesoscopic localization in contagion dynamics on higher-order networks. Phys. Rev. E 103, 032301 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  111. Pastor-Satorras, R. & Vespignani, A. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001).

    Article  ADS  Google Scholar 

  112. Castellano, C. & Pastor-Satorras, R. Competing activation mechanisms in epidemics on networks. Sci. Rep. https://doi.org/10.1038/srep00371 (2012).

  113. Boguñá, M., Castellano, C. & Pastor-Satorras, R. Nature of the epidemic threshold for the susceptible–infected–susceptible dynamics in networks. Phys. Rev. Lett. 111, 068701 (2013).

    Article  ADS  Google Scholar 

  114. Cota, W., Mata, A. S. & Ferreira, S. C. Robustness and fragility of the susceptible–infected–susceptible epidemic models on complex networks. Phys. Rev. E 98, 012310 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  115. de Arruda, G. F., Cozzo, E., Peixoto, T. P., Rodrigues, F. A. & Moreno, Y. Disease localization in multilayer networks. Phys. Rev. X 7, 011014 (2017).

    Google Scholar 

  116. Gross, T., D’Lima, C. J. D. & Blasius, B. Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006).

    Article  ADS  Google Scholar 

  117. Scarpino, S. V., Allard, A. & Hébert-Dufresne, L. The effect of a prudent adaptive behaviour on disease transmission. Nat. Phys. 12, 1042–1046 (2016).

    Article  Google Scholar 

  118. Gross, T. & Blasius, B. Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008).

    Article  Google Scholar 

  119. Chen, L., Ghanbarnejad, F. & Brockmann, D. Fundamental properties of cooperative contagion processes. N. J. Phys. 19, 103041 (2017).

    Article  Google Scholar 

  120. Van Mieghem, P., Omic, J. & Kooij, R. Virus spread in networks. IEEE/ACM Trans. Netw. 17, 1–14 (2009).

    Article  Google Scholar 

  121. Van Mieghem, P. Performance Analysis of Complex Networks and Systems (Cambridge Univ. Press, 2014).

  122. Cator, E. & Van Mieghem, P. Second-order mean-field susceptible–infected–susceptible epidemic threshold. Phys. Rev. E 85, 056111 (2012).

    Article  ADS  Google Scholar 

  123. Mata, A. S. & Ferreira, S. C. Pair quenched mean-field theory for the susceptible–infected–susceptible model on complex networks. Europhys. Lett. 103, 48003 (2013).

    Article  ADS  Google Scholar 

  124. Hébert-Dufresne, L., Noël, P.-A., Marceau, V., Allard, A. & Dubé, L. J. Propagation dynamics on networks featuring complex topologies. Phys. Rev. E 82, 036115 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  125. O’Sullivan, D. J., O’Keeffe, G., Fennell, P. & Gleeson, J. Mathematical modeling of complex contagion on clustered networks. Front. Phys. 3 (2015).

  126. Marceau, V., Noël, P.-A., Hébert-Dufresne, L., Allard, A. & Dubé, L. J. Adaptive networks: coevolution of disease and topology. Phys. Rev. E 82, 036116 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  127. Gleeson, J. P. High-accuracy approximation of binary-state dynamics on networks. Phys. Rev. Lett. 107, 068701 (2011).

    Article  ADS  Google Scholar 

  128. Gleeson, J. P. Binary-state dynamics on complex networks: pair approximation and beyond. Phys. Rev. X 3, 021004 (2013).

    Google Scholar 

  129. Gómez, S., Arenas, A., Borge-Holthoefer, J., Meloni, S. & Moreno, Y. Discrete-time Markov Chain approach to contact-based disease spreading in complex networks. Europhys. Lett. 89, 38009 (2010).

    Article  ADS  Google Scholar 

  130. Matamalas, J. T., Arenas, A. & Gómez, S. Effective approach to epidemic containment using link equations in complex networks. Sci. Adv. 4, eaau4212 (2018).

    Article  ADS  Google Scholar 

  131. Castellano, C. & Pastor-Satorras, R. Cumulative merging percolation and the epidemic transition of the susceptible–infected–susceptible model in networks. Phys. Rev. X 10, 011070 (2020).

    Google Scholar 

  132. Antelmi, A., Cordasco, G., Scarano, V. & Spagnuolo, C. Modeling and evaluating epidemic control strategies with high-order temporal networks. IEEE Access 9, 140938–140964 (2021).

    Article  Google Scholar 

  133. Cisneros-Velarde, P. & Bullo, F. Multigroup SIS epidemics with simplicial and higher order interactions. IEEE Trans. Control Netw. Syst. 9, 695–705 (2022).

    Article  MathSciNet  Google Scholar 

  134. Li, Z. et al. Contagion in simplicial complexes. Chaos Solit. Fract. 152, 111307 (2021).

    Article  MathSciNet  Google Scholar 

  135. Malizia, F., Gallo, L., Frasca, M., Latora, V. & Russo, G. A pair-based approximation for simplicial contagion. Preprint at https://arxiv.org/abs/2307.10151 (2023).

  136. Lv, X., Fan, D., Yang, J., Li, Q. & Zhou, L. Delay differential equation modeling of social contagion with higher-order interactions. Appl. Math. Comput. 466, 128464 (2024).

    MathSciNet  Google Scholar 

  137. Matamalas, J. T., Gómez, S. & Arenas, A. Abrupt phase transition of epidemic spreading in simplicial complexes. Phys. Rev. Res. 2, 012049 (2020).

    Article  Google Scholar 

  138. Burgio, G., Arenas, A., Gómez, S. & Matamalas, J. T. Network clique cover approximation to analyze complex contagions through group interactions. Commun. Phys. 4, 111 (2021).

    Article  Google Scholar 

  139. St-Onge, G. et al. Influential groups for seeding and sustaining nonlinear contagion in heterogeneous hypergraphs. Commun. Phys. 5, 25 (2022).

    Article  Google Scholar 

  140. Palafox-Castillo, G. & Berrones-Santos, A. Stochastic epidemic model on a simplicial complex. Phys. A Stat. Mech. Appl. 606, 128053 (2022).

    Article  MathSciNet  Google Scholar 

  141. Wang, D., Zhao, Y., Luo, J. & Leng, H. Simplicial SIRS epidemic models with nonlinear incidence rates. Chaos Interdiscip. J. Nonlinear Sci. 31, 053112 (2021).

    Article  MathSciNet  Google Scholar 

  142. Leng, H., Zhao, Y., Luo, J. & Ye, Y. Simplicial epidemic model with birth and death. Chaos Interdiscip. J. Nonlinear Sci. 32, 093144 (2022).

    Article  MathSciNet  Google Scholar 

  143. Zhou, J., Zhao, Y., Ye, Y. & Bao, Y. Bifurcation analysis of a fractional-order simplicial SIRS system induced by double delays. Int. J. Bifurc. Chaos 32, 2250068 (2022).

    Article  MathSciNet  Google Scholar 

  144. Cui, S., Liu, F., Jardón-Kojakhmetov, H. & Cao, M. General SIS diffusion process with indirect spreading pathways on a hypergraph. Preprint at https://arxiv.org/abs/2306.00619 (2023).

  145. Tocino, A., Hernández Serrano, D., Hernández-Serrano, J. & Villarroel, J. A stochastic simplicial SIS model for complex networks. Commun. Nonlinear Sci. Numer. Simul. 120, 107161 (2023).

    Article  MathSciNet  Google Scholar 

  146. Serrano, D. H., Villarroel, J., Hernández-Serrano, J. & Tocino, Á. Stochastic simplicial contagion model. Chaos Solit. Fract. 167, 113008 (2023).

    Article  MathSciNet  Google Scholar 

  147. Chowdhary, S., Kumar, A., Cencetti, G., Iacopini, I. & Battiston, F. Simplicial contagion in temporal higher-order networks. J. Phys. Complex. 2, 035019 (2021).

    Article  ADS  Google Scholar 

  148. Guizzo, A. et al. Simplicial temporal networks from Wi-Fi data in a university campus: the effects of restrictions on epidemic spreading. Front. Phys. 10, 1010929 (2022).

    Article  Google Scholar 

  149. De Kemmeter, J.-F., Gallo, L., Boncoraglio, F., Latora, V. & Carletti, T. Complex contagion in social systems with distrust. Adv. Complex Syst. https://doi.org/10.1142/S0219525924400010 (2024).

  150. Chang, X. et al. Combined effect of simplicial complexes and interlayer interaction: an example of information-epidemic dynamics on multiplex networks. Phys. Rev. Res. 5, 013196 (2023).

    Article  Google Scholar 

  151. Fan, J., Zhao, D., Xia, C. & Tanimoto, J. Coupled spreading between information and epidemics on multiplex networks with simplicial complexes. Chaos Interdiscip. J. Nonlinear Sci. 32, 113115 (2022).

    Article  Google Scholar 

  152. Liu, L., Feng, M., Xia, C., Zhao, D. & Perc, M. Epidemic trajectories and awareness diffusion among unequals in simplicial complexes. Chaos Solit. Fract. 173, 113657 (2023).

    Article  MathSciNet  Google Scholar 

  153. Li, W. et al. Coevolution of epidemic and infodemic on higher-order networks. Chaos Solit. Fract. 168, 113102 (2023).

    Article  Google Scholar 

  154. Wang, H., Zhang, H.-F., Zhu, P.-C. & Ma, C. Interplay of simplicial awareness contagion and epidemic spreading on time-varying multiplex networks. Chaos Interdiscip. J. Nonlinear Sci. 32, 083110 (2022).

    Article  MathSciNet  Google Scholar 

  155. Fan, J., Yin, Q., Xia, C. & Perc, M. Epidemics on multilayer simplicial complexes. Proc. R. Soc. A 478, 20220059 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  156. Sun, Q., Wang, Z., Zhao, D., Xia, C. & Perc, M. Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes. Chaos Solit. Fract. 164, 112734 (2022).

    Article  MathSciNet  Google Scholar 

  157. You, X., Zhang, M., Ma, Y., Tan, J. & Liu, Z. Impact of higher-order interactions and individual emotional heterogeneity on information-disease coupled dynamics in multiplex networks. Chaos Solit. Fract. 177, 114186 (2023).

    Article  MathSciNet  Google Scholar 

  158. Hong, Z., Zhou, H., Wang, Z., Yin, Q. & Liu, J. Coupled propagation dynamics of information and infectious disease on two-layer complex networks with simplices. Mathematics 11, 4904 (2023).

    Article  Google Scholar 

  159. Lucas, M., Iacopini, I., Robiglio, T., Barrat, A. & Petri, G. Simplicially driven simple contagion. Phys. Rev. Res. 5, 013201 (2023).

    Article  Google Scholar 

  160. Wang, W., Liu, Q.-H., Liang, J., Hu, Y. & Zhou, T. Coevolution spreading in complex networks. Phys. Rep. 820, 1–51 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  161. Li, W., Xue, X., Pan, L., Lin, T. & Wang, W. Competing spreading dynamics in simplicial complex. Appl. Math. Comput. 412, 126595 (2022).

    Google Scholar 

  162. Nie, Y., Li, W., Pan, L., Lin, T. & Wang, W. Markovian approach to tackle competing pathogens in simplicial complex. Appl. Math. Comput. 417, 126773 (2022).

    MathSciNet  Google Scholar 

  163. Nie, Y., Zhong, X., Lin, T. & Wang, W. Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions. Appl. Math. Comput. 432, 127380 (2022).

    MathSciNet  Google Scholar 

  164. Veldt, N., Benson, A. R. & Kleinberg, J. Combinatorial characterizations and impossibilities for higher-order homophily. Sci. Adv. 9, eabq3200 (2023).

    Article  ADS  Google Scholar 

  165. Xue, X. et al. Cooperative epidemic spreading in simplicial complex. Commun. Nonlinear Sci. Numer. Simul. 114, 106671 (2022).

    Article  MathSciNet  Google Scholar 

  166. Li, W. et al. Two competing simplicial irreversible epidemics on simplicial complex. Chaos Interdiscip. J. Nonlinear Sci. 32, 093135 (2022).

    Article  MathSciNet  Google Scholar 

  167. Gracy, S., Anderson, B. D. O., Ye, M. & Uribe, C. A. Competitive networked bivirus SIS spread over hypergraphs (2023). Preprint at https://arxiv.org/abs/2309.14230 (2023).

  168. Mancastroppa, M., Iacopini, I., Petri, G. & Barrat, A. Hyper-cores promote localization and efficient seeding in higher-order processes. Nat. Commun. 14, 6223 (2023).

    Article  ADS  Google Scholar 

  169. Ahmed, A. et al. Visualisation and analysis of the internet movie database. In 2007 6th International Asia-Pacific Symposium on Visualization 17–24 (2007).

  170. Cerinšek, M. & Batagelj, V. Generalized two-mode cores. Soc. Netw. 42, 80–87 (2015).

    Article  Google Scholar 

  171. Liu, B. et al. Efficient (α, β)-core computation in bipartite graphs. VLDB J. 29, 1075–1099 (2020).

    Article  Google Scholar 

  172. Lee, J., Goh, K.-I., Lee, D.-S. & Kahng, B. (k,q)-Core decomposition of hypergraphs. Chaos Solit. Fract. 173, 113645 (2023).

    Article  MathSciNet  Google Scholar 

  173. Bianconi, G. & Dorogovtsev, S. N. Nature of hypergraph k-core percolation problems. Phys. Rev. E 109, 014307 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  174. Chen, J., Feng, M., Zhao, D., Xia, C. & Wang, Z. Composite effective degree Markov Chain for epidemic dynamics on higher-order networks. IEEE Trans. Syst. Man Cybern. 53, 7415–7426 (2023).

    Article  Google Scholar 

  175. Su, Y., Zhang, Y. & Weigang, L. Multi-stage information spreading model in simplicial complexes driven by spatiotemporal evolution of public health emergency. IEEE Access 11, 128316–128336 (2023).

    Article  Google Scholar 

  176. Ghosh, S. et al. Dimension reduction in higher-order contagious phenomena. Chaos Interdiscip. J. Nonlinear Sci. 33, 053117 (2023).

    Article  MathSciNet  Google Scholar 

  177. Nie, Y. et al. Digital contact tracing on hypergraphs. Chaos Interdiscip. J. Nonlinear Sci. 33, 063146 (2023).

    Article  MathSciNet  Google Scholar 

  178. Mancastroppa, M., Guizzo, A., Castellano, C., Vezzani, A. & Burioni, R. Sideward contact tracing and the control of epidemics in large gatherings. J. R. Soc. Interface 19, 20220048 (2022).

    Article  Google Scholar 

  179. Jhun, B. Effective epidemic containment strategy in hypergraphs. Phys. Rev. Res. 3, 033282 (2021).

    Article  Google Scholar 

  180. Qi, L. Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005).

    Article  MathSciNet  Google Scholar 

  181. Lim, L.-H. Singular values and eigenvalues of tensors: a variational approach. In 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005 129–132 (2005).

  182. Qi, L. & Luo, Z. Tensor Analysis: Spectral Theory and Special Tensors Vol. 151 (Siam, 2017).

  183. Nie, Y., Su, S., Lin, T., Liu, Y. & Wang, W. Voluntary vaccination on hypergraph. Commun. Nonlinear Sci. Numer. Simul. 127, 107594 (2023).

    Article  MathSciNet  Google Scholar 

  184. Neuhäuser, L., Scholkemper, M., Tudisco, F. & Schaub, M. T. Learning the effective order of a hypergraph dynamical system. Sci. Adv. 10, eadh4053 (2024).

    Article  Google Scholar 

  185. Rosas, F. E. et al. Disentangling high-order mechanisms and high-order behaviours in complex systems. Nat. Phys. 18, 476–477 (2022).

    Article  Google Scholar 

  186. Chitra, U. & Raphael, B. J. Random walks on hypergraphs with edge-dependent vertex weights. In 36th International Conference on Machine Learning (ICML, 2019).

  187. Ceria, A. & Wang, H. Temporal-topological properties of higher-order evolving networks. Sci. Rep. 13, 5885 (2023).

    Article  ADS  Google Scholar 

  188. Chen, Y., Gel, Y. R., Marathe, M. V. & Poor, H. V. A simplicial epidemic model for covid-19 spread analysis. Proc. Natl Acad. Sci. USA 121, e2313171120 (2024).

    Article  Google Scholar 

  189. Young, J.-G., Petri, G. & Peixoto, T. P. Hypergraph reconstruction from network data. Commun. Phys. 4, 135 (2021).

    Article  Google Scholar 

  190. Contisciani, M., Battiston, F. & De Bacco, C. Inference of hyperedges and overlapping communities in hypergraphs. Nat. Commun. 13, 7229 (2022).

    Article  ADS  Google Scholar 

  191. Goltsev, A. V., Dorogovtsev, S. N., Oliveira, J. G. & Mendes, J. F. F. Localization and spreading of diseases in complex networks. Phys. Rev. Lett. 109, 128702 (2012).

    Article  ADS  Google Scholar 

  192. Lee, H. K., Shim, P.-S. & Noh, J. D. Epidemic threshold of the susceptible–infected–susceptible model on complex networks. Phys. Rev. E 87, 062812 (2013).

    Article  ADS  Google Scholar 

  193. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  194. Newman, M. Networks: An Introduction (Oxford Univ. Press, 2010).

  195. Kivelä, M. et al. Multilayer networks. J. Complex Netw. 2, 203–271 (2014).

    Article  Google Scholar 

  196. Boccaletti, S. et al. The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  197. Bianconi, G. Multilayer Networks: Structure and Function (Oxford Univ. Press, 2018).

  198. Aleta, A. & Moreno, Y. Multilayer networks in a nutshell. Annu. Rev. Condens. Matter Phys. 10, 45–62 (2019).

    Article  ADS  Google Scholar 

  199. Artime, O. et al. Multilayer Network Science: From Cells to Societies. Elements in the Structure and Dynamics of Complex Networks (Cambridge Univ. Press, 2022).

  200. Miranda, M., Estrada-Rodriguez, G. & Estrada, E. What is in a simplicial complex? A metaplex-based approach to its structure and dynamics. Entropy 25, 1599 (2023).

    Article  ADS  Google Scholar 

  201. Lambiotte, R., Rosvall, M. & Scholtes, I. From networks to optimal higher-order models of complex systems. Nat. Phys. 15, 313–320 (2019).

    Article  Google Scholar 

  202. Gao, Z., Ghosh, D., Harrington, H. A., Restrepo, J. G. & Taylor, D. Dynamics on networks with higher-order interactions. Chaos: Interdiscip. J. Nonlinear Sci. 33, 040401 (2023).

    Article  Google Scholar 

  203. Ferreira, S. C., Castellano, C. & Pastor-Satorras, R. Epidemic thresholds of the susceptible–infected–susceptible model on networks: a comparison of numerical and theoretical results. Phys. Rev. E 86, 041125 (2012).

    Article  ADS  Google Scholar 

  204. Cho, Y. S., Lee, J. S., Herrmann, H. J. & Kahng, B. Hybrid percolation transition in cluster merging processes: continuously varying exponents. Phys. Rev. Lett. 116, 025701 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.A. acknowledges support through the grant RYC2021-033226-I funded by MCIN/AEI/10.13039/501100011033 and the European Union ‘NextGenerationEU/PRTR’. Y.M. was partially supported by the Government of Aragón, Spain, and ‘ERDF — a way of making Europe’ through grant E36-23R (FENOL) and by Ministerio de Ciencia e Innovación, Agencia Española de Investigación (MCIN/AEI/10.13039/501100011033) grant no. PID2020-115800GB-I00.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of this article.

Corresponding author

Correspondence to Yamir Moreno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Timoteo Carletti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraz de Arruda, G., Aleta, A. & Moreno, Y. Contagion dynamics on higher-order networks. Nat Rev Phys (2024). https://doi.org/10.1038/s42254-024-00733-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s42254-024-00733-0

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics