Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene–environment interactions in human health

Abstract

Gene–environment interactions (G × E), the interplay of genetic variation with environmental factors, have a pivotal impact on human complex traits and diseases. Statistically, G × E can be assessed by determining the deviation from expectation of predictive models based solely on the phenotypic effects of genetics or environmental exposures. Despite the unprecedented, widespread and diverse use of G × E analytical frameworks, heterogeneity in their application and reporting hinders their applicability in public health. In this Review, we discuss study design considerations as well as G × E analytical frameworks to assess polygenic liability dependent on the environment, to identify specific genetic variants exhibiting G × E, and to characterize environmental context for these dynamics. We conclude with recommendations to address the most common challenges and pitfalls in the conceptualization, methodology and reporting of G × E studies, as well as future directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: G × E modelling.
Fig. 2: A framework depicting the joint contribution of genetic susceptibility and environmental and social exposures to human health across the lifespan.
Fig. 3: General overview of G × E methods.
Fig. 4: GWIS characteristics and findings over time, 2008–2022, as curated by the NHGRI-EBI GWAS Catalog.

Similar content being viewed by others

References

  1. Brandes, N., Weissbrod, O. & Linial, M. Open problems in human trait genetics. Genome Biol. 23, 131 (2022). This review comprehensively discusses the major issues and challenges moving forward in human genetics.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vicente, C. T., Revez, J. A. & Ferreira, M. A. R. Lessons from ten years of genome-wide association studies of asthma. Clin. Transl. Immunol. 6, e165 (2017).

    Article  Google Scholar 

  3. Tsuo, K. et al. Multi-ancestry meta-analysis of asthma identifies novel associations and highlights the value of increased power and diversity. Cell Genomics 2, 100212 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Trivedi, M. & Denton, E. Asthma in children and adults — what are the differences and what can they tell us about asthma? Front. Pediatr. 7, 256 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sandoval-Motta, S., Aldana, M., Martínez-Romero, E. & Frank, A. The human microbiome and the missing heritability problem. Front. Genet. 8, 80 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pingault, J.-B. et al. Using genetic data to strengthen causal inference in observational research. Nat. Rev. Genet. 19, 566–580 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Ritz, B. R. et al. Lessons learned from past gene–environment interaction successes. Am. J. Epidemiol. 186, 778–786 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. McAllister, K. et al. Current challenges and new opportunities for gene–environment interaction studies of complex diseases. Am. J. Epidemiol. 186, 753–761 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Thomas, D. Gene–environment-wide association studies: emerging approaches. Nat. Rev. Genet. 11, 259–272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Virolainen, S. J., VonHandorf, A., Viel, K. C. M. F., Weirauch, M. T. & Kottyan, L. C. Gene–environment interactions and their impact on human health. Genes. Immun. 24, 1–11 (2023).

    Article  PubMed  Google Scholar 

  12. Wu, H., Eckhardt, C. M. & Baccarelli, A. A. Molecular mechanisms of environmental exposures and human disease. Nat. Rev. Genet. 24, 332–344 (2023). This review highlights the impact of environmental factors on molecular mechanisms and the challenges in exposome approaches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Breton, C. V. et al. Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Commun. Biol. 4, 769 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marderstein, A. R. et al. Leveraging phenotypic variability to identify genetic interactions in human phenotypes. Am. J. Hum. Genet. 108, 49–67 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Westerman, K. E. et al. Variance-quantitative trait loci enable systematic discovery of gene–environment interactions for cardiometabolic serum biomarkers. Nat. Commun. 13, 3993 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi, G. Genome-wide variance quantitative trait locus analysis suggests small interaction effects in blood pressure traits. Sci. Rep. 12, 12649 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ives, C. et al. Linking complex disease and exposure data — insights from an environmental and occupational health study. J. Expo. Sci. Environ. Epidemiol. 33, 12–16 (2023).

    Article  PubMed  Google Scholar 

  19. Knapp, E. A. et al. The Environmental Influences on Child Health Outcomes (ECHO)-wide cohort. Am. J. Epidemiol. https://doi.org/10.1093/aje/kwad071 (2023).

  20. Hamilton, C. M. et al. The PhenX Toolkit: get the most from your measures. Am. J. Epidemiol. 174, 253–260 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. White, I. R., Royston, P. & Wood, A. M. Multiple imputation using chained equations: issues and guidance for practice. Stat. Med. 30, 377–399 (2011).

    Article  PubMed  Google Scholar 

  22. Austin, P. C., White, I. R., Lee, D. S. & van Buuren, S. Missing data in clinical research: a tutorial on multiple imputation. Can. J. Cardiol. 37, 1322–1331 (2021).

    Article  PubMed  Google Scholar 

  23. Hormozdiari, F. et al. Imputing phenotypes for genome-wide association studies. Am. J. Hum. Genet. 99, 89–103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dahl, A. et al. A multiple-phenotype imputation method for genetic studies. Nat. Genet. 48, 466–472 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu, H. et al. Lifestyle risk score: handling missingness of individual lifestyle components in meta-analysis of gene-by-lifestyle interactions. Eur. J. Hum. Genet. 29, 839–850 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moore, C. M., Jacobson, S. A. & Fingerlin, T. E. Power and sample size calculations for genetic association studies in the presence of genetic model misspecification. Hum. Hered. 84, 256–271 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Kooperberg, C. & Hsu, L. powerGWASinteraction: power calculations for G × E and G × G interactions for GWAS. R package version 1.1.3 https://CRAN.R-project.org/package=powerGWASinteraction (2015).

  28. Gauderman, W. J. Sample size requirements for matched case–control studies of gene–environment interaction. Stat. Med. 21, 35–50 (2002).

    Article  PubMed  Google Scholar 

  29. Gauderman, W. J. Candidate gene association analysis for a quantitative trait, using parent–offspring trios. Genet. Epidemiol. 25, 327–338 (2003).

    Article  PubMed  Google Scholar 

  30. Gjerdevik, M. et al. Haplin power analysis: a software module for power and sample size calculations in genetic association analyses of family triads and unrelated controls. BMC Bioinforma. 20, 165 (2019).

    Article  Google Scholar 

  31. Gaye, A., Burton, T. W. Y. & Burton, P. R. ESPRESSO: taking into account assessment errors on outcome and exposures in power analysis for association studies. Bioinformatics 31, 2691–2696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McCaw, Z. R., Lane, J. M., Saxena, R., Redline, S. & Lin, X. Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies. Biometrics 76, 1262–1272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ueki, M., Fujii, M. & Tamiya, G.for Alzheimer’s Disease Neuroimaging Initiative and the Alzheimer’s Disease Metabolomics Consortium Quick assessment for systematic test statistic inflation/deflation due to null model misspecifications in genome-wide environment interaction studies. PLoS ONE 14, e0219825 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shi, G. & Nehorai, A. Robustness of meta-analyses in finding gene × environment interactions. PLoS ONE 12, e0171446 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rao, D. C. et al. Multiancestry study of gene–lifestyle interactions for cardiovascular traits in 610 475 individuals from 124 cohorts: design and rationale. Circ. Cardiovasc. Genet. 10, e001649 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Young, A. I. et al. Relatedness disequilibrium regression estimates heritability without environmental bias. Nat. Genet. 50, 1304–1310 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bernabeu, E. et al. Sex differences in genetic architecture in the UK Biobank. Nat. Genet. 53, 1283–1289 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, H. et al. Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank. Sci. Adv. 5, eaaw3538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Laville, V. et al. Gene–lifestyle interactions in the genomics of human complex traits. Eur. J. Hum. Genet. 30, 730–739 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kerin, M. & Marchini, J. Inferring gene-by-environment interactions with a Bayesian whole-genome regression model. Am. J. Hum. Genet. 107, 698–713 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kerin, M. & Marchini, J. A non-linear regression method for estimation of gene–environment heritability. Bioinformatics 36, 5632–5639 (2021).

    Article  PubMed  Google Scholar 

  42. Dahl, A. et al. A robust method uncovers significant context-specific heritability in diverse complex traits. Am. J. Hum. Genet. 106, 71–91 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sulc, J. et al. Quantification of the overall contribution of gene–environment interaction for obesity-related traits. Nat. Commun. 11, 1385 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moore, R. et al. A linear mixed-model approach to study multivariate gene–environment interactions. Nat. Genet. 51, 180–186 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Robinson, M. R. et al. Genotype–covariate interaction effects and the heritability of adult body mass index. Nat. Genet. 49, 1174–1181 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Ni, G. et al. Genotype–covariate correlation and interaction disentangled by a whole-genome multivariate reaction norm model. Nat. Commun. 10, 2239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shin, J. & Lee, S. H. GxEsum: a novel approach to estimate the phenotypic variance explained by genome-wide G × E interaction based on GWAS summary statistics for biobank-scale data. Genome Biol. 22, 183 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Murcray, C. E., Lewinger, J. P. & Gauderman, W. J. Gene–environment interaction in genome-wide association studies. Am. J. Epidemiol. 169, 219–226 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dudbridge, F. & Fletcher, O. Gene–environment dependence creates spurious gene–environment interaction. Am. J. Hum. Genet. 95, 301–307 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miao, J. et al. Reimagining gene–environment interaction analysis for human complex traits. Preprint at bioRxiv https://doi.org/10.1101/2022.12.11.519973 (2022).

  52. Warrier, V. et al. Gene–environment correlations and causal effects of childhood maltreatment on physical and mental health: a genetically informed approach. Lancet Psychiatry 8, 373–386 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang, Z., Shi, W., Carroll, R. J. & Chatterjee, N. Joint modeling of gene–environment correlations and interactions using polygenic risk scores in case–control studies. Preprint at bioRxiv https://doi.org/10.1101/2023.02.14.528572 (2023).

  54. Spiller, W., Hartwig, F. P., Sanderson, E., Davey Smith, G. & Bowden, J. Interaction-based Mendelian randomization with measured and unmeasured gene-by-covariate interactions. PLoS ONE 17, e0271933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, Y., Balbona, J. V. & Keller, M. C. Bias and precision of parameter estimates from models using polygenic scores to estimate environmental and genetic parental influences. Behav. Genet. 51, 279–288 (2021).

    Article  PubMed  Google Scholar 

  56. Tchetgen Tchetgen, E., Sun, B. & Walter, S. The GENIUS approach to robust Mendelian randomization inference. Stat. Sci. 36, 443–464 (2021).

    Article  Google Scholar 

  57. Liu, Z., Ye, T., Sun, B., Schooling, M. & Tchetgen, E. T. Mendelian randomization mixed-scale treatment effect robust identification and estimation for causal inference. Biometrics 79, 2208–2219 (2022).

    Article  PubMed  Google Scholar 

  58. Balbona, J. V., Kim, Y. & Keller, M. C. Estimation of parental effects using polygenic scores. Behav. Genet. 51, 264–278 (2021). This article describes a model to determine parental effects on child traits using polygenic risk scores while accounting for assortative mating.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Spiller, W., Slichter, D., Bowden, J. & Davey Smith, G. Detecting and correcting for bias in Mendelian randomization analyses using gene-by-environment interactions. Int. J. Epidemiol. 48, 702–712 (2019).

    PubMed  Google Scholar 

  60. Karageorgiou, V., Tyrrell, J., Mckinley, T. J. & Bowden, J. Weak and pleiotropy robust sex-stratified Mendelian randomization in the one sample and two sample settings. Genet. Epidemiol. 47, 135–151 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Meisner, A., Kundu, P. & Chatterjee, N. Case-only analysis of gene–environment interactions using polygenic risk scores. Am. J. Epidemiol. 188, 2013–2020 (2019).

    Article  PubMed  Google Scholar 

  62. Tang, Y., You, D., Yi, H., Yang, S. & Zhao, Y. IPRS: leveraging gene–environment interaction to reconstruct polygenic risk score. Front. Genet. 13, 801397 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Arnau-Soler, A. et al. Genome-wide by environment interaction studies of depressive symptoms and psychosocial stress in UK Biobank and Generation Scotland. Transl. Psychiatry 9, 14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Werme, J., van der Sluis, S., Posthuma, D. & de Leeuw, C. A. Genome-wide gene–environment interactions in neuroticism: an exploratory study across 25 environments. Transl. Psychiatry 11, 180 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lau, M., Kress, S., Schikowski, T. & Schwender, H. Efficient gene–environment interaction testing through bootstrap aggregating. Sci. Rep. 13, 937 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kraft, P., Yen, Y.-C., Stram, D. O., Morrison, J. & Gauderman, W. J. Exploiting gene–environment interaction to detect genetic associations. Hum. Hered. 63, 111–119 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Manning, A. K. et al. Meta-analysis of gene–environment interaction: joint estimation of SNP and SNP × environment regression coefficients. Genet. Epidemiol. 35, 11–18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Aschard, H., Hancock, D. B., London, S. J. & Kraft, P. Genome-wide meta-analysis of joint tests for genetic and gene–environment interaction effects. Hum. Hered. 70, 292–300 (2010).

    Article  PubMed  Google Scholar 

  70. Randall, J. C. et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet 9, e1003500 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Laville, V. et al. Deriving stratified effects from joint models investigating gene–environment interactions. BMC Bioinforma. 21, 251 (2020).

    Article  Google Scholar 

  72. Sung, Y. J. et al. An empirical comparison of joint and stratified frameworks for studying G × E interactions: systolic blood pressure and smoking in the CHARGE Gene–Lifestyle Interactions Working Group. Genet. Epidemiol. 40, 404–415 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Winkler, T. W. et al. The influence of age and sex on genetic associations with adult body size and shape: a large-scale genome-wide interaction study. PLoS Genet. 11, e1005378 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jin, Q. & Shi, G. Meta-analysis of joint test of SNP and SNP–environment interaction with heterogeneity. Hum. Hered. 86, 1–9 (2021).

    Article  PubMed  Google Scholar 

  75. Jin, Q. & Shi, G. Meta-analysis of SNP–environment interaction with heterogeneity. Hum. Hered. 84, 117–126 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Yu, Y. et al. Subset-based analysis using gene–environment interactions for discovery of genetic associations across multiple studies or phenotypes. Hum. Hered. 83, 283–314 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Wu, S., Xu, Y., Zhang, Q. & Ma, S. Gene–environment interaction analysis via deep learning. Genet. Epidemiol. 47, 261–286 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gauderman, W. J. et al. Update on the state of the science for analytical methods for gene–environment interactions. Am. J. Epidemiol. 186, 762–770 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mukherjee, B. & Chatterjee, N. Exploiting gene–environment independence for analysis of case–control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and efficiency. Biometrics 64, 685–694 (2008).

    Article  PubMed  Google Scholar 

  80. Lin, W.-Y., Huang, C.-C., Liu, Y.-L., Tsai, S.-J. & Kuo, P.-H. Polygenic approaches to detect gene–environment interactions when external information is unavailable. Brief. Bioinform. 20, 2236–2252 (2019).

    Article  PubMed  Google Scholar 

  81. Gauderman, W. J., Zhang, P., Morrison, J. L. & Lewinger, J. P. Finding novel genes by testing G × E interactions in a genome-wide association study. Genet. Epidemiol. 37, 603–613 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hsu, L. et al. Powerful cocktail methods for detecting genome-wide gene–environment interaction. Genet. Epidemiol. 36, 183–194 (2012).

    Article  PubMed  Google Scholar 

  83. Majumdar, A. et al. A two-step approach to testing overall effect of gene–environment interaction for multiple phenotypes. Bioinformatics 36, 5640–5648 (2021).

    Article  PubMed  Google Scholar 

  84. Davis, A. P. et al. Comparative Toxicogenomics Database (CTD): update 2023. Nucleic Acids Res. 51, D1257–D1262 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Freshour, S. L. et al. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 49, D1144–D1151 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Miao, J. & Lu, Q. in Handbook of Statistical Bioinformatics (eds. Lu, H. H.-S., Schölkopf, B., Wells, M. T. & Zhao, H.) 257–270 (Springer, 2022).

  87. Lyon, M. S., Millard, L. A. C., Smith, G. D., Gaunt, T. R. & Tilling, K. Hypothesis-free detection of gene-interaction effects on biomarker concentration in UK Biobank using variance prioritisation. Preprint at medRxiv https://doi.org/10.1101/2022.01.05.21268406 (2022).

  88. Kim, J. et al. Joint analysis of multiple interaction parameters in genetic association studies. Genetics 211, 483–494 (2019).

    Article  PubMed  Google Scholar 

  89. Chi, J. T. et al. SEAGLE: a scalable exact algorithm for large-scale set-based gene–environment interaction tests in Biobank data. Front. Genet. 12, 710055 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lin, X., Lee, S., Christiani, D. C. & Lin, X. Test for interactions between a genetic marker set and environment in generalized linear models. Biostatistics 14, 667–681 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhao, G., Marceau, R., Zhang, D. & Tzeng, J.-Y. Assessing gene–environment interactions for common and rare variants with binary traits using gene-trait similarity regression. Genetics 199, 695–710 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tzeng, J.-Y. et al. Studying gene and gene–environment effects of uncommon and common variants on continuous traits: a marker-set approach using gene-trait similarity regression. Am. J. Hum. Genet. 89, 277–288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhao, N., Zhang, H., Clark, J. J., Maity, A. & Wu, M. C. Composite kernel machine regression based on likelihood ratio test for joint testing of genetic and gene–environment interaction effect. Biometrics 75, 625–637 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Price, A. L. et al. Pooled association tests for rare variants in exon-resequencing studies. Am. J. Hum. Genet. 86, 832–838 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, B. & Leal, S. M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet. 83, 311–321 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jiao, S. et al. SBERIA: set-based gene–environment interaction test for rare and common variants in complex diseases. Genet. Epidemiol. 37, 452–464 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhao, Z., Zhang, J., Sha, Q. & Hao, H. Testing gene–environment interactions for rare and/or common variants in sequencing association studies. PLoS ONE 15, e0229217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zemlianskaia, N., Gauderman, W. J. & Lewinger, J. P. A scalable hierarchical lasso for gene–environment interactions. J. Comput. Graph. Stat. 31, 1091–1103 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang, X. et al. Efficient gene–environment interaction tests for large biobank-scale sequencing studies. Genet. Epidemiol. 44, 908–923 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Su, Y.-R., Di, C.-Z., Hsu, L. & Genetics and Epidemiology of Colorectal Cancer Consortium A unified powerful set-based test for sequencing data analysis of G × E interactions. Biostatistics 18, 119–131 (2017).

    Article  PubMed  Google Scholar 

  102. Chen, H., Meigs, J. B. & Dupuis, J. Incorporating gene–environment interaction in testing for association with rare genetic variants. Hum. Hered. 78, 81–90 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Lim, E., Chen, H., Dupuis, J. & Liu, C.-T. A unified method for rare variant analysis of gene–environment interactions. Stat. Med. 39, 801–813 (2020).

    Article  PubMed  Google Scholar 

  104. Lin, X. et al. Test for rare variants by environment interactions in sequencing association studies. Biometrics 72, 156–164 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, J. et al. Test gene–environment interactions for multiple traits in sequencing association studies. Hum. Hered. 84, 170–196 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. He, Z. et al. Set-based tests for the gene–environment interaction in longitudinal studies. J. Am. Stat. Assoc. 112, 966–978 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Johnsen, P. V., Riemer-Sørensen, S., DeWan, A. T., Cahill, M. E. & Langaas, M. A new method for exploring gene–gene and gene–environment interactions in GWAS with tree ensemble methods and SHAP values. BMC Bioinforma. 22, 230 (2021).

    Article  CAS  Google Scholar 

  108. Lee, S., Teslovich, T. M., Boehnke, M. & Lin, X. General framework for meta-analysis of rare variants in sequencing association studies. Am. J. Hum. Genet. 93, 42–53 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, J. et al. A meta-analysis approach with filtering for identifying gene-level gene–environment interactions. Genet. Epidemiol. 42, 434–446 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Jin, X. & Shi, G. Variance-component-based meta-analysis of gene–environment interactions for rare variants. G3 Bethesda 11, jkab203 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang, X. et al. Genomic summary statistics and meta-analysis for set-based gene–environment interaction tests in large-scale sequencing studies. Preprint at medRxiv https://doi.org/10.1101/2022.05.08.22274819 (2022).

  112. Bi, W. et al. A fast and accurate method for genome-wide scale phenome-wide G × E analysis and its application to UK Biobank. Am. J. Hum. Genet. 105, 1182–1192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhong, W., Chhibber, A., Luo, L., Mehrotra, D. V. & Shen, J. A fast and powerful linear mixed model approach for genotype–environment interaction tests in large-scale GWAS. Brief. Bioinform. 24, bbac547 (2023).

    Article  PubMed  Google Scholar 

  114. Jin, X. & Shi, G. Kernel-based gene–environment interaction tests for rare variants with multiple quantitative phenotypes. PLoS ONE 17, e0275929 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hecker, J. et al. A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables. PLoS Genet. 18, e1010464 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Westerman, K. E. et al. GEM: scalable and flexible gene–environment interaction analysis in millions of samples. Bioinformatics 37, 3514–3520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Osazuwa-Peters, O. L. et al. Identifying blood pressure loci whose effects are modulated by multiple lifestyle exposures. Genet. Epidemiol. 44, 629–641 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhou, Z., Ku, H.-C., Manning, S. E., Zhang, M. & Xing, C. A varying coefficient model to jointly test genetic and gene–environment interaction effects. Behav. Genet. https://doi.org/10.1007/s10519-022-10131-w (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Mulligan, C. J. et al. Novel G × E effects and resilience: a case:control longitudinal study of psychosocial stress with war-affected youth. PLoS ONE 17, e0266509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, W. et al. Detecting gene–environment interaction for maternal exposures using case–parent trios ascertained through a case with non-syndromic orofacial cleft. Front. Cell Dev. Biol. 9, 621018 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Dizier, M.-H. et al. Interactive effect between ATPase-related genes and early-life tobacco smoke exposure on bronchial hyper-responsiveness detected in asthma-ascertained families. Thorax 74, 254–260 (2019).

    Article  PubMed  Google Scholar 

  122. Pingault, J.-B. et al. Genetic nurture versus genetic transmission of risk for ADHD traits in the Norwegian Mother, Father and Child Cohort Study. Mol. Psychiatry https://doi.org/10.1038/s41380-022-01863-6 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Demange, P. A. et al. Estimating effects of parents’ cognitive and non-cognitive skills on offspring education using polygenic scores. Nat. Commun. 13, 4801 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dunn, E. C. et al. Research review: gene–environment interaction research in youth depression — a systematic review with recommendations for future research. J. Child. Psychol. Psychiatry 52, 1223–1238 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhang, H. et al. A new method for multiancestry polygenic prediction improves performance across diverse populations. Nat. Genet. 55, 1757–1768 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. All of Us Research Program Investigators et al. The ‘All of Us’ Research Program. N. Engl. J. Med. 381, 668–676 (2019).

    Article  Google Scholar 

  127. Kachuri, L. et al. Gene expression in African Americans, Puerto Ricans and Mexican Americans reveals ancestry-specific patterns of genetic architecture. Nat. Genet. 55, 952–963 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li, B. et al. Incorporating local ancestry improves identification of ancestry-associated methylation signatures and meQTLs in African Americans. Commun. Biol. 5, 401 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Czamara, D. et al. Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns. Nat. Commun. 10, 2548 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Majarian, T. D. et al. Multi-omics insights into the biological mechanisms underlying statistical gene-by-lifestyle interactions with smoking and alcohol consumption. Front. Genet. 13, 954713 (2022). This study elucidates how epigenomics, transcriptomics and G × E summary statistics can be combined to provide molecular evidence for G × E statistical interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Findley, A. S. et al. Functional dynamic genetic effects on gene regulation are specific to particular cell types and environmental conditions. eLife 10, e67077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nagar, S. D., Nápoles, A. M., Jordan, I. K. & Mariño-Ramírez, L. Socioeconomic deprivation and genetic ancestry interact to modify type 2 diabetes ethnic disparities in the United Kingdom. EClinicalMedicine 37, 100960 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Park, D. S. et al. An ancestry-based approach for detecting interactions. Genet. Epidemiol. 42, 49–63 (2018).

    Article  PubMed  Google Scholar 

  134. Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Lambert, S. A. et al. The Polygenic Score Catalog as an open database for reproducibility and systematic evaluation. Nat. Genet. 53, 420–425 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Reales, G. & Wallace, C. Sharing GWAS summary statistics results in more citations. Commun. Biol. 6, 116 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Little, J. et al. STrengthening the REporting of Genetic Association Studies (STREGA): an extension of the STROBE statement. PLoS Med. 6, e22 (2009).

    Article  PubMed  Google Scholar 

  141. Wand, H. et al. Improving reporting standards for polygenic scores in risk prediction studies. Nature 591, 211–219 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Khan, A. T. et al. Recommendations on the use and reporting of race, ethnicity, and ancestry in genetic research: experiences from the NHLBI TOPMed program. Cell Genomics 2, 100155 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Committee on the Use of Race, Ethnicity, and Ancestry as Population Descriptors in Genomics Research et al. Using Population Descriptors in Genetics and Genomics Research: A New Framework for an Evolving Field 26902 (National Academies Press, 2023).

  144. Wijsman, E. M. Family-based approaches: design, imputation, analysis, and beyond. BMC Genet. 17, 9 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Truong, V. Q. et al. Quality control procedures for genome‐wide association studies. Curr. Protoc. 2, e603 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Hayhurst, J. et al. A community driven GWAS summary statistics standard. Preprint at bioRxiv https://doi.org/10.1101/2022.07.15.500230 (2022).

  147. Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).

    Article  CAS  PubMed  Google Scholar 

  148. Ottman, R. Gene–environment interaction: definitions and study designs. Prev. Med. 25, 764–770 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wright, A. F., Carothers, A. D. & Campbell, H. Gene–environment interactions — the BioBank UK study. Pharmacogenomics J. 2, 75–82 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Olvera Alvarez, H. A., Appleton, A. A., Fuller, C. H., Belcourt, A. & Kubzansky, L. D. An integrated socio-environmental model of health and well-being: a conceptual framework exploring the joint contribution of environmental and social exposures to health and disease over the life span. Curr. Environ. Health Rep. 5, 233–243 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work was funded by the Combining advances in Genomics and Environmental science to accelerate Actionable Research and practice in ASD (GEARS) Network (R01ES034554). E.H.-L. and G.L.-W. received support from the National Institutes of Health (NIH) National Human Genome Research Institute (NHGRI) (R35HG011944-02). No funding agencies had a role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. The views expressed are those of the authors and not necessarily those of any funder.

Author information

Authors and Affiliations

Authors

Contributions

E.H.-L., C.L.-A. and G.L.W. researched the literature. E.H.-L. and G.L.W. wrote the article. All authors contributed to discussions of the content and reviewed and/or edited the manuscript.

Corresponding author

Correspondence to Genevieve L. Wojcik.

Peer review

Peer review information

Nature Reviews Genetics thanks Seunggeun Lee, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Competing interests

The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Comparative Toxicogenomics Database: https://ctdbase.org/

Drug–Gene Interaction Database: https://www.dgidb.org/

GWAS Catalog: https://www.ebi.ac.uk/gwas/

PGS Catalog: https://www.pgscatalog.org/

PhenX Toolkit: https://www.phenxtoolkit.org

Supplementary information

Glossary

Biological or functional interaction

The scenario whereby the exposures physically interact to produce an outcome.

Broad-sense heritability

(H2). The proportion of phenotypic variation attributed to genetic variation, including additive, dominance, epistasis and gene–environment interactions (G × E).

G × E correlation

(rGE). A situation when there are genetic differences in exposure to specific environments. rGEcan be classified as passive, active or evocative according to its source.

G × E heritability

(h2GE). The proportion of the phenotypic variability attributable to G × E.

Genome-wide interaction studies

(GWIS). Analytical approaches to investigate the modifying effect of an exposure variable on a genetic association.

Heteroscedasticity

A statistical phenomenon where the variability of the residuals (errors) in a regression model varies across different levels of the predictor variables.

Imputation

The statistical process of predicting missing genetic data based on observed data, typically using reference panels of known genetic variants.

Instrumental variables

Variables associated with an exposure that is not associated with the outcome through any other pathway.

Mechanistic interactions

Situations when there are individuals for whom the outcome would occur if both of two exposures were present but not if one or both of the exposures were absent.

Mendelian randomization

(MR). An analytical method that uses ‘instrumental variables’ for the predictor to determine the causal influences of a predictor on an outcome. MR is based on three key assumptions: instrumental variables are associated with the exposure; instrumental variables are not associated with any confounder; and instrumental variables do not exert effects on the phenotype not mediated by the exposure (also known as ‘horizontal pleiotropy’).

Multiple testing

Repeated statistical testing of hypotheses within a single study, increasing the likelihood of false positives. Adjustments such as Bonferroni correction help control the family-wise error rate.

Polygenic score

(PGS). A single value that aggregates the effect of variants across an individual’s germ-line genome to quantify the genetic predisposition to a trait. Usually calculated as a weighted sum of several trait-associated alleles (dosage), where the per-allele effect sizes (βi) are extracted from the genome-wide association study (GWAS) summary statistics of independent studies.

Set-based analyses

Analytical methods that aggregate G × E signals within a gene or genomic region.

Statistical interactions

Situations when the effect of a risk factor on an outcome varies across strata of another factor. An interaction on an additive scale occurs when the combined effect of the risk factors differs with regards to the sum of the individual effects, whereas an interaction on a multiplicative scales occurs when the combined effect of the risk factors differs with regards to the product of the individual effects.

Variance quantitative trait locus

(vQTL). Genetic variants associated with the variance of a continuous trait.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Luis, E., Benke, K., Volk, H. et al. Gene–environment interactions in human health. Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00731-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41576-024-00731-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing