Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell–drug conjugates

Abstract

By combining living cells with therapeutics, cell–drug conjugates can potentiate the functions of both components, particularly for applications in drug delivery and therapy. The conjugates can be designed to persist in the bloodstream, undergo chemotaxis, evade surveillance by the immune system, proliferate, or maintain or transform their cellular phenotypes. In this Review, we discuss strategies for the design of cell–drug conjugates with specific functions, the techniques for their preparation, and their applications in the treatment of cancers, autoimmune diseases and other pathologies. We also discuss the translational challenges and opportunities of this class of drug-delivery systems and therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of definition, preparation and therapeutic application of CDCs.
Fig. 2: Common strategies for preparing CDCs.
Fig. 3: Methods leveraging covalent reactions for the preparation of CDCs.
Fig. 4: CDCs for the treatment of cancers.
Fig. 5: CDCs for the treatment of autoimmune diseases.

Similar content being viewed by others

References

  1. Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Manzari, M. T. et al. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 6, 351–370 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Sun, W., Hu, Q., Ji, W., Wright, G. & Gu, Z. Leveraging physiology for precision drug delivery. Physiol. Rev. 97, 189–225 (2017).

    Article  Google Scholar 

  5. Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951–967 (2021).

    Article  PubMed  Google Scholar 

  6. Grimaldi, N. et al. Lipid-based nanovesicles for nanomedicine. Chem. Soc. Rev. 45, 6520–6545 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Borandeh, S., van Bochove, B., Teotia, A. & Seppala, J. Polymeric drug delivery systems by additive manufacturing. Adv. Drug Deliv. Rev. 173, 349–373 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Li, F. et al. Spatiotemporally programmable cascade hybridization of hairpin DNA in polymeric nanoframework for precise siRNA delivery. Nat. Commun. 12, 1138 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu, Z. & Chen, X. Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. Chem. Soc. Rev. 45, 1432–1456 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peer, D. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Anselmo, A., Gokarn, Y. & Mitragotri, S. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov.18, 19–40 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y. et al. Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Adv. Drug Deliv. Rev. 110, 112–126 (2017).

    Article  PubMed  Google Scholar 

  14. Cooper, B. M., Iegre, J., O’Donovan, D. H., Olwegard Halvarsson, M. & Spring, D. R. Peptides as a platform for targeted therapeutics for cancer: peptide–drug conjugates (PDCs). Chem. Soc. Rev. 50, 1480–1494 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Beck, A., Goetsch, L., Dumontet, C. & Corvaia, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Drago, J. Z., Modi, S. & Chandarlapaty, S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 18, 327–344 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ekladious, I., Colson, Y. L. & Grinstaff, M. W. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov. 18, 273–294 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, Z., Ukidve, A., Kim, J. & Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 181, 151–167 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Combes, F., Meyer, E. & Sanders, N. N. Immune cells as tumor drug delivery vehicles. J. Control. Release 327, 70–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Timin, A. S. et al. Cell-based drug delivery and use of nano- and microcarriers for cell functionalization. Adv. Healthc. Mater. 7, 1700818 (2018).

    Article  Google Scholar 

  21. Yu, H., Yang, Z., Li, F., Xu, L. & Sun, Y. Cell-mediated targeting drugs delivery systems. Drug Deliv. 27, 1425–1437 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Su, Y., Xie, Z., Kim, G. B., Dong, C. & Yang, J. Design strategies and applications of circulating cell-mediated drug delivery systems. ACS Biomater. Sci. Eng. 1, 201–217 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, Z., Hu, Q. & Gu, Z. Leveraging engineering of cells for drug delivery. Acc. Chem. Res. 51, 668–677 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Q. et al. Non-genetic engineering of cells for drug delivery and cell-based therapy. Adv. Drug Deliv. Rev. 91, 125–140 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Yoo, J. W., Irvine, D. J., Discher, D. E. & Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 10, 521–535 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Csizmar, C. M., Petersburg, J. R. & Wagner, C. R. Programming cell–cell interactions through non-genetic membrane engineering. Cell Chem. Biol. 25, 931–940 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, W., Su, Z., Hao, M., Ju, C. & Zhang, C. Cytopharmaceuticals: an emerging paradigm for drug delivery. J. Control. Release 328, 313–324 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Xue, J. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 12, 692–700 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Xie, Z. et al. Immune cell-mediated biodegradable theranostic nanoparticles for melanoma targeting and drug delivery. Small 13, 1603121 (2017).

    Article  Google Scholar 

  30. Wu, Q. et al. Inhibition of tumor metastasis by liquid-nitrogen-shocked tumor cells with oncolytic viruses infection. Adv. Mater. 35, 2212210 (2023).

    Article  CAS  Google Scholar 

  31. Sun, P. et al. A smart nanoparticle-laden and remote-controlled self-destructive macrophage for enhanced chemo/chemodynamic synergistic therapy. ACS Nano 14, 13894–13904 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, W. et al. Nanoparticle-laden macrophages for tumor-tropic drug delivery. Adv. Mater. 30, 1805557 (2018).

    Article  Google Scholar 

  33. Li, C. X. et al. Artificially reprogrammed macrophages as tumor-tropic immunosuppression-resistant biologics to realize therapeutics production and immune activation. Adv. Mater. 31, 1807211 (2019).

    Article  Google Scholar 

  34. Evans, M. A. et al. Macrophage‐mediated delivery of hypoxia‐activated prodrug nanoparticles. Adv. Ther. 3, 1900162 (2019).

    Article  Google Scholar 

  35. Stephan, M. T. & Irvine, D. J. Enhancing cell therapies from the outside in: cell surface engineering using synthetic nanomaterials. Nano Today 6, 309–325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ayer, M. et al. T cell-mediated transport of polymer nanoparticles across the blood–brain barrier. Adv. Healthc. Mater. 10, 2001375 (2021).

    Article  CAS  Google Scholar 

  37. Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xie, S. et al. Doxorubicin-conjugated Escherichia coli Nissle 1917 swimmers to achieve tumor targeting and responsive drug release. J. Control. Release 268, 390–399 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, E. et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520–531 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, L. Y. et al. Promoting the activation of T cells with glycopolymer-modified dendritic cells by enhancing cell interactions. Sci. Adv. 6, eabb6595 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shields, C. W. et al. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, D. Y. et al. Cell surface engineering and application in cell delivery to heart diseases. J. Biol. Eng. 12, 28 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park, J. et al. Engineering the surface of therapeutic “living” cells. Chem. Rev. 118, 1664–1690 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yan, J., Yu, J., Wang, C. & Gu, Z. Red blood cells for drug delivery. Small Methods 1, 1700270 (2017).

    Article  Google Scholar 

  46. Villa, C. H., Anselmo, A. C., Mitragotri, S. & Muzykantov, V. Red blood cells: supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv. Drug Deliv. Rev. 106, 88–103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Semple, J. W., Italiano, J. E. Jr & Freedman, J. Platelets and the immune continuum. Nat. Rev. Immunol. 11, 264–274 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Sørensen, A. L. et al. Role of sialic acid for platelet life span: exposure of β-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood 114, 1645–1654 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ihler, G. M., Glew, R. H. & Schnure, F. W. Enzyme loading of erythrocytes. Proc. Natl Acad. Sci. USA 70, 2663–2666 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pishesha, N. et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc. Natl Acad. Sci. USA 114, 3157–3162 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morera, D. & MacKenzie, S. A. Is there a direct role for erythrocytes in the immune response? Vet. Res. 42, 89 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chambers, E. & Mitragotri, S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J. Control. Release 100, 111–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Glassman, P. M. et al. Vascular drug delivery using carrier red blood cells: focus on RBC surface loading and pharmacokinetics. Pharmaceutics 12, 440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, C. et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 1, 0011 (2017).

    Article  CAS  Google Scholar 

  55. Patel, A. A. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 214, 1913–1923 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Liang, T. et al. Recent advances in macrophage-mediated drug delivery systems. Int. J. Nanomed. 16, 2703–2714 (2021).

    Article  Google Scholar 

  58. Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Nance, E., Pun, S. H., Saigal, R. & Sellers, D. L. Drug delivery to the central nervous system. Nat. Rev. Mater. 7, 314–331 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Van Tellingen, O. et al. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist. Update 19, 1–12 (2015).

    Article  Google Scholar 

  61. Mu, C. F. et al. Targeted drug delivery for tumor therapy inside the bone marrow. Biomaterials 155, 191–202 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, L. et al. From blood to the brain: can systemically transplanted mesenchymal stem cells cross the blood–brain barrier? Stem Cells Int. 2013, 435093 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ratnam, N. M., Gilbert, M. R. & Giles, A. J. Immunotherapy in CNS cancers: the role of immune cell trafficking. Neuro Oncol 21, 37–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Stuckey, D. W. & Shah, K. Stem cell-based therapies for cancer treatment: separating hope from hype. Nat. Rev. Cancer 14, 683–691 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mooney, R., Hammad, M., Batalla-Covello, J., Abdul Majid, A. & Aboody, K. S. Concise review: neural stem cell-mediated targeted cancer therapies. Stem Cells Transl. Med. 7, 740–747 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Luo, Z. et al. Neutrophil hitchhiking for drug delivery to the bone marrow. Nat. Nanotechnol. 18, 647–656 (2023).

    Article  CAS  PubMed  Google Scholar 

  68. Van Apeldoorn, A. A. et al. Raman imaging of PLGA microsphere degradation inside macrophages. J. Am. Chem. Soc. 126, 13226–13227 (2004).

    Article  PubMed  Google Scholar 

  69. Champion, J. A. & Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103, 4930–4934 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gilbert, J. B., O’Brien, J. S., Suresh, H. S., Cohen, R. E. & Rubner, M. F. Orientation-specific attachment of polymeric microtubes on cell surfaces. Adv. Mater. 25, 5948–5952 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Sharma, G. et al. Polymer particle shape independently influences binding and internalization by macrophages. J. Control. Release 147, 408–412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. SenGupta, S., Parent, C. A. & Bear, J. E. The principles of directed cell migration. Nat. Rev. Mol. Cell Biol. 22, 529–547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ukidve, A. et al. Erythrocyte-driven immunization via biomimicry of their natural antigen-presenting function. Proc. Natl Acad. Sci. USA 117, 17727–17736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sackstein, R. et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat. Med. 14, 181–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Ullah, M., Liu, D. D. & Thakor, A. S. Mesenchymal stromal cell homing: mechanisms and strategies for improvement. iScience 15, 421–438 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tang, J. et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat. Biomed. Eng. 2, 17–26 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lv, Y. et al. Near-infrared light-triggered platelet arsenal for combined photothermal-immunotherapy against cancer. Sci. Adv. 7, eabd7614 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ho-Tin-Noe, B., Boulaftali, Y. & Camerer, E. Platelets and vascular integrity: how platelets prevent bleeding in inflammation. Blood 131, 277–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Rao, L. et al. Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma. Angew. Chem. Int. Ed. 57, 986–991 (2018).

    Article  CAS  Google Scholar 

  80. Moser, B. & Loetscher, P. Lymphocyte traffic control by chemokines. Nat. Immunol. 2, 123–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Schenkel, A. R., Mamdouh, Z. & Muller, W. A. Locomotion of monocytes on endothelium is a critical step during extravasation. Nat. Immunol. 5, 393–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762–774 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Burn, G. L., Foti, A., Marsman, G., Patel, D. F. & Zychlinsky, A. The neutrophil. Immunity 54, 1377–1391 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Anselmo, A. C. et al. Monocyte-mediated delivery of polymeric backpacks to inflamed tissues: a generalized strategy to deliver drugs to treat inflammation. J. Control. Release 199, 29–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Palucka, K. & Banchereau, J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 39, 38–48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kasinskas, R. W. & Forbes, N. S. Salmonella typhimurium lacking ribose chemoreceptors localize in tumor quiescence and induce apoptosis. Cancer Res. 67, 3201–3209 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Suh, S. et al. Nanoscale bacteria‐enabled autonomous drug delivery system (NanoBEADS) enhances intratumoral transport of nanomedicine. Adv. Sci. 6, 1801309 (2019).

    Article  Google Scholar 

  89. Chen, W. et al. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 12, 5995–6005 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Park, B.-W., Zhuang, J., Yasa, O. & Sitti, M. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano 11, 8910–8923 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Naik, S., Larsen, S. B., Cowley, C. J. & Fuchs, E. Two to tango: dialog between immunity and stem cells in health and disease. Cell 175, 908–920 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Haider, H., Jiang, S., Idris, N. M. & Ashraf, M. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1α/CXCR4 signaling to promote myocardial repair. Circ. Res. 103, 1300–1308 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Stappenbeck, T. S. & Miyoshi, H. The role of stromal stem cells in tissue regeneration and wound repair. Science 324, 1666–1669 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Leong, J. et al. Surface tethering of inflammation-modulatory nanostimulators to stem cells for ischemic muscle repair. ACS Nano 14, 5298–5313 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zucchini, N. et al. Natural killer cells in immunodefense against infective agents. Expert Rev. Anti Infect. Ther. 6, 867–885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Myers, J. A. & Miller, J. S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 85–100 (2021).

    Article  PubMed  Google Scholar 

  98. Bald, T., Krummel, M. F., Smyth, M. J. & Barry, K. C. The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies. Nat. Immunol. 21, 835–847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, S. et al. NK cell-based cancer immunotherapy: from basic biology to clinical development. J. Hematol. Oncol. 14, 7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vivier, E., Tomasello, E., Baratin, M., Walzer, T. & Ugolini, S. Functions of natural killer cells. Nat. Immunol. 9, 503–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Eskandari, S. K. et al. Regulatory T cells engineered with TCR signaling-responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter. Sci. Transl. Med. 12, eaaw4744 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Roncarolo, M. G. & Battaglia, M. Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat. Rev. Immunol. 7, 585–598 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Chen, Q. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019).

    Article  CAS  PubMed  Google Scholar 

  104. Wang, C. et al. Oncolytic mineralized bacteria as potent locally administered immunotherapeutics. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01191-w (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Lou, X., Chen, Z., He, Z., Sun, M. & Sun, J. Bacteria-mediated synergistic cancer therapy: small microbiome has a big hope. Nanomicro. Lett. 13, 37 (2021).

    PubMed  PubMed Central  Google Scholar 

  106. Zheng, J. H. et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. 9, eaak9537 (2017).

    Article  PubMed  Google Scholar 

  107. Sieow, B. F., Wun, K. S., Yong, W. P., Hwang, I. Y. & Chang, M. W. Tweak to treat: reprograming bacteria for cancer treatment. Trends Cancer 7, 447–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Saccheri, F. et al. Bacteria-induced gap junctions in tumors favor antigen cross-presentation and antitumor immunity. Sci. Transl. Med. 2, 44ra57 (2010).

    Article  PubMed  Google Scholar 

  109. Custodio, C. A. & Mano, J. F. Cell surface engineering to control cellular interactions. ChemNanoMat 2, 376–384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Simons, K. & Sampaio, J. L. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3, a004697 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mager, M. D., LaPointe, V. & Stevens, M. M. Exploring and exploiting chemistry at the cell surface. Nat. Chem. 3, 582–589 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Bertozzi, C. R. & Kiessling, L. L. Chemical glycobiology. Science 291, 2357–2364 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Lee, D. Y., Park, S. J., Nam, J. H. & Byun, Y. A new strategy toward improving immunoprotection in cell therapy for diabetes mellitus: long-functioning PEGylated islets in vivo. Tissue Eng. 12, 615–623 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Rossi, N. A. et al. Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols. Biomaterials 31, 4167–4178 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Chapanian, R. et al. Therapeutic cells via functional modification: influence of molecular properties of polymer grafts on in vivo circulation, clearance, immunogenicity, and antigen protection. Biomacromolecules 14, 2052–2062 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Bradley, A. J., Murad, K. L., Regan, K. L. & Scott, M. D. Biophysical consequences of linker chemistry and polymer size on stealth erythrocytes: size does matter. Biochim. Biophys. Acta 1561, 147–158 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Scott, M. D., Murad, K. L., Koumpouras, F., Talbot, M. & Eaton, J. W. Chemical camouflage of antigenic determinants: stealth erythrocytes. Proc. Natl Acad. Sci. USA 94, 7566–7571 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rhodes, J. et al. Therapeutic potentiation of the immune system by costimulatory Schiff-base-forming drugs. Nature 377, 71–75 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Kim, H. et al. General and facile coating of single cells via mild reduction. J. Am. Chem. Soc. 140, 1199–1202 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Sugimoto, S., Moriyama, R., Mori, T. & Iwasaki, Y. Surface engineering of macrophages with nucleic acid aptamers for the capture of circulating tumor cells. Chem. Commun. 51, 17428–17430 (2015).

    Article  CAS  Google Scholar 

  121. Hoyle, C. E., Lowe, A. B. & Bowman, C. N. Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 39, 1355–1387 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Wayteck, L. et al. Hitchhiking nanoparticles: reversible coupling of lipid-based nanoparticles to cytotoxic T lymphocytes. Biomaterials 77, 243–254 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Geng, W. et al. Click reaction for reversible encapsulation of single yeast cells. ACS Nano 13, 14459–14467 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Ulrich, S., Boturyn, D., Marra, A., Renaudet, O. & Dumy, P. Oxime ligation: a chemoselective click-type reaction for accessing multifunctional biomolecular constructs. Chemistry 20, 34–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Dutta, D., Pulsipher, A., Luo, W. & Yousaf, M. N. Synthetic chemoselective rewiring of cell surfaces: generation of three-dimensional tissue structures. J. Am. Chem. Soc. 133, 8704–8713 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Dutta, D., Pulsipher, A., Luo, W., Mak, H. & Yousaf, M. N. Engineering cell surfaces via liposome fusion. Bioconjug. Chem. 22, 2423–2433 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Rogozhnikov, D., O’Brien, P. J., Elahipanah, S. & Yousaf, M. N. Scaffold free bio-orthogonal assembly of 3-dimensional cardiac tissue via cell surface engineering. Sci. Rep. 6, 39806 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kayser, H. et al. Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-d-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, H. & Mooney, D. J. Metabolic glycan labelling for cancer-targeted therapy. Nat. Chem. 12, 1102–1114 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, H. et al. Metabolic labeling and targeted modulation of dendritic cells. Nat. Mater. 19, 1244–1252 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hu, Q. et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat. Biomed. Eng. 2, 831–840 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Popp, M. W., Antos, J. M., Grotenbreg, G. M., Spooner, E. & Ploegh, H. L. Sortagging: a versatile method for protein labeling. Nat. Chem. Biol. 3, 707–708 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Shi, J. et al. Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. Proc. Natl Acad. Sci. USA 111, 10131–10136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chen, I., Howarth, M., Lin, W. Y. & Ting, A. Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Lin, C. W. & Ting, A. Y. Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J. Am. Chem. Soc. 128, 4542–4543 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Qi, C. et al. TGase-mediated cell membrane modification and targeted cell delivery to inflammatory endothelium. Biomaterials 269, 120276 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Pulsipher, A., Griffin, M. E., Stone, S. E. & Hsieh-Wilson, L. C. Long-lived engineering of glycans to direct stem cell fate. Angew. Chem. Int. Ed. 54, 1466–1470 (2015).

    Article  CAS  Google Scholar 

  138. De Oliveira, S. & Saldanha, C. An overview about erythrocyte membrane. Clin. Hemorheol. Microcirc. 44, 63–74 (2010).

    Article  PubMed  Google Scholar 

  139. Wilson, J. T., Krishnamurthy, V. R., Cui, W. X., Qu, Z. & Chaikof, E. L. Noncovalent cell surface engineering with cationic graft copolymers. J. Am. Chem. Soc. 131, 18228–18229 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Gribova, V., Auzely-Velty, R. & Picart, C. Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chem. Mater. 24, 854–869 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Germain, M. et al. Protection of mammalian cell used in biosensors by coating with a polyelectrolyte shell. Biosens. Bioelectron. 21, 1566–1573 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Zelepukin, I. V. et al. Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth. Nanoscale 11, 1636–1646 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Zhao, Z. et al. Engineering of living cells with polyphenol-functionalized biologically active nanocomplexes. Adv. Mater. 32, e2003492 (2020).

    Article  PubMed  Google Scholar 

  144. Wang, C. et al. Red blood cells for glucose-responsive insulin delivery. Adv. Mater. 29, 1606617 (2017).

    Article  Google Scholar 

  145. Wang, J. Q. et al. Glucose transporter inhibitor-conjugated insulin mitigates hypoglycemia. Proc. Natl Acad. Sci. USA 116, 10744–10748 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Livnah, O., Bayer, E. A., Wilchek, M. & Sussman, J. L. Three-dimensional structures of avidin and the avidin–biotin complex. Proc. Natl Acad. Sci. USA 90, 5076–5080 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Muzykantov, V. R., Smirnov, M. D. & Samokhin, G. P. Avidin attachment to biotinylated erythrocytes induces homologous lysis via the alternative pathway of complement. Blood 78, 2611–2618 (1991).

    Article  CAS  PubMed  Google Scholar 

  148. Murciano, J. C. et al. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat. Biotechnol. 21, 891–896 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Cheng, H. et al. Nanoparticulate cellular patches for cell-mediated tumoritropic delivery. ACS Nano 4, 625–631 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Klyachko, N. L. et al. Macrophages with cellular backpacks for targeted drug delivery to the brain. Biomaterials 140, 79–87 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Polak, R. et al. Liposome-loaded cell backpacks. Adv. Healthc. Mater. 4, 2832–2841 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Chandrasekaran, S., Chan, M. F., Li, J. & King, M. R. Super natural killer cells that target metastases in the tumor draining lymph nodes. Biomaterials 77, 66–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Zaitsev, S. et al. Human complement receptor type 1-directed loading of tissue plasminogen activator on circulating erythrocytes for prophylactic fibrinolysis. Blood 108, 1895–1902 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gao, C. et al. Bioorthogonal supramolecular cell-conjugation for targeted hitchhiking drug delivery. Mater. Today 40, 9–17 (2020).

    Article  Google Scholar 

  155. Cao, H. et al. Bioengineered macrophages can responsively transform into nanovesicles to target lung metastasis. Nano Lett. 18, 4762–4770 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Chung, H. A., Kato, K., Itoh, C., Ohhashi, S. & Nagamune, T. Casual cell surface remodeling using biocompatible lipid-poly(ethylene glycol)(n): development of stealth cells and monitoring of cell membrane behavior in serum-supplemented conditions. J. Biomed. Mater. Res. 70, 179–185 (2004).

    Article  Google Scholar 

  157. Armstrong, J. P. K. et al. Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue. Nat. Commun. 6, 7405 (2015).

    Article  CAS  PubMed  Google Scholar 

  158. Jeong, J. H. et al. Leukocyte-mimicking stem cell delivery via in situ coating of cells with a bioactive hyperbranched polyglycerol. J. Am. Chem. Soc. 135, 8770–8773 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yamamoto, T., Teramura, Y., Itagaki, T., Arima, Y. & Iwata, H. Interaction of poly(ethylene glycol)-conjugated phospholipids with supported lipid membranes and their influence on protein adsorption. Sci. Technol. Adv. Mater. 17, 677–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Church, D. C. & Pokorski, J. K. Cell engineering with functional poly(oxanorbornene) block copolymers. Angew. Chem. Int. Ed. 59, 11379–11383 (2020).

    Article  CAS  Google Scholar 

  161. Lostalé-Seijo, I. & Montenegro, J. Synthetic materials at the forefront of gene delivery. Nat. Rev. Chem. 2, 258–277 (2018).

    Article  Google Scholar 

  162. Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 6, 53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Day, J. W. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 20, 284–293 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Liu, X. et al. Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery. Adv. Mater. 28, 1743–1752 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Green, J. J. et al. Nanoparticles for gene transfer to human embryonic stem cell colonies. Nano Lett. 8, 3126–3130 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Peister, A., Mellad, J. A., Wang, M., Tucker, H. A. & Prockop, D. J. Stable transfection of MSCs by electroporation. Gene Ther. 11, 224–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Gornalusse, G. G. et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765–772 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhao, L., Teklemariam, T. & Hantash, B. M. Heterelogous expression of mutated HLA-G decreases immunogenicity of human embryonic stem cells and their epidermal derivatives. Stem Cell Res. 13, 342–354 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rong, Z. et al. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 14, 121–130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ben Nasr, M. et al. PD-L1 genetic overexpression or pharmacological restoration in hematopoietic stem and progenitor cells reverses autoimmune diabetes. Sci. Transl. Med. 9, eaam7543 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Zhang, X. et al. Engineered PD-L1-expressing platelets reverse new-onset type 1 diabetes. Adv. Mater. 32, 1907692 (2020).

    Article  CAS  Google Scholar 

  175. Dimitrov, A. S. (ed.) Therapeutic Antibodies: Methods and Protocols (Humana, 2009).

  176. Kochenderfer, J. N. et al. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J. Immunother. 32, 689–702 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wolf, P., Alzubi, J., Gratzke, C. & Cathomen, T. The potential of CAR T cell therapy for prostate cancer. Nat. Rev. Urol. 18, 556–571 (2021).

    Article  PubMed  Google Scholar 

  178. Li, J., Sharkey, C. C., Wun, B., Liesveld, J. L. & King, M. R. Genetic engineering of platelets to neutralize circulating tumor cells. J. Control. Release 228, 38–47 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chrousos, G. P. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 5, 374–381 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Chavez, J. C., Bachmeier, C. & Kharfan-Dabaja, M. A. CAR T-cell therapy for B-cell lymphomas: clinical trial results of available products. Ther. Adv. Hematol. 10, 2040620719841581 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ali, M. et al. T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes. Nat. Biotechnol. 40, 488–498 (2022).

    Article  CAS  PubMed  Google Scholar 

  183. Siriwon, N. et al. CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction. Cancer Immunol. Res. 6, 812–824 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Stephan, M. T., Stephan, S. B., Bak, P., Chen, J. & Irvine, D. J. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Biomaterials 33, 5776–5787 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hao, M. X. et al. Combination of metabolic intervention and T cell therapy enhances solid tumor immunotherapy. Sci. Transl. Med. 12, eaaz6667 (2020).

    Article  CAS  PubMed  Google Scholar 

  186. Xie, Y. Q. et al. Redox-responsive interleukin-2 nanogel specifically and safely promotes the proliferation and memory precursor differentiation of tumor-reactive T-cells. Biomater. Sci. 7, 1345–1357 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Li, J., Jiang, X., Li, H., Gelinsky, M. & Gu, Z. Tailoring materials for modulation of macrophage fate. Adv. Mater. 33, 2004172 (2021).

    Article  CAS  Google Scholar 

  188. Xia, Y. et al. Engineering macrophages for cancer immunotherapy and drug delivery. Adv. Mater. 32, 2002054 (2020).

    Article  CAS  Google Scholar 

  189. Baer, C. et al. Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity. Nat. Cell Biol. 18, 790–802 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Brown, J. M., Recht, L. & Strober, S. The promise of targeting macrophages in cancer therapy. Clin. Cancer Res. 23, 3241–3250 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Klei, T. R. L. et al. Hemolysis in the spleen drives erythrocyte turnover. Blood 136, 1579–1589 (2020).

    CAS  PubMed  Google Scholar 

  192. Zhao, Z. M., Ukidve, A., Gao, Y. S., Kim, J. & Mitragotri, S. Erythrocyte leveraged chemotherapy (ELeCt): nanoparticle assembly on erythrocyte surface to combat lung metastasis. Sci. Adv. 5, eaax9250 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhao, Z. M. et al. Systemic tumour suppression via the preferential accumulation of erythrocyte-anchored chemokine-encapsulating nanoparticles in lung metastases. Nat. Biomed. Eng. 5, 441–454 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Yang, Y. et al. T cell-mimicking platelet–drug conjugates. Matter 6, 2340–2355 (2023).

    Article  CAS  Google Scholar 

  195. Quispe-Tintaya, W. et al. Nontoxic radioactive Listeriaat is a highly effective therapy against metastatic pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 8668–8673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Luo, C. H., Huang, C. T., Su, C. H. & Yeh, C. S. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy. Nano Lett. 16, 3493–3499 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Felfoul, O. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 11, 941–947 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Fan, J. X. et al. Engineered bacterial bioreactor for tumor therapy via Fenton-like reaction with localized H2O2 generation. Adv. Mater. 31, 1808278 (2019).

    Article  Google Scholar 

  199. Rafiq, S. et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat. Biotechnol. 36, 847–856 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Topalian, S. L., Taube, J. M. & Pardoll, D. M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 367, eaax0182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  202. Casey, S. C. et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352, 227–231 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Chen, Q., Wang, C., Chen, G., Hu, Q. & Gu, Z. Delivery strategies for immune checkpoint blockade. Adv. Healthc. Mater. 7, e1800424 (2018).

    Article  PubMed  Google Scholar 

  204. Liu, X., Wang, D., Zhang, P. & Li, Y. Recent advances in nanosized drug delivery systems for overcoming the barriers to anti-PD immunotherapy of cancer. Nano Today 29, 100801 (2019).

    Article  CAS  Google Scholar 

  205. Bambace, N. M. & Holmes, C. E. The platelet contribution to cancer progression. J. Thromb. Haemost. 9, 237–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  206. Yu, L. X. et al. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat. Commun. 5, 5256 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Placke, T. et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 72, 440–448 (2012).

    Article  CAS  PubMed  Google Scholar 

  208. Hu, Q. et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat. Biomed. Eng. 5, 1038–1047 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Li, H. et al. Disrupting tumour vasculature and recruitment of aPDL1-loaded platelets control tumour metastasis. Nat. Commun. 12, 2773 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhang, X. et al. Engineering PD-1-presenting platelets for cancer immunotherapy. Nano Lett. 18, 5716–5725 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Huang, B. N. et al. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl. Med. 7, 291ra94 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Im, S. et al. Harnessing the formation of natural killer–tumor cell immunological synapses for enhanced therapeutic effect in solid tumors. Adv. Mater. 32, 2000020 (2020).

    Article  CAS  Google Scholar 

  213. Siegler, E. L. et al. Combination cancer therapy using chimeric antigen receptor-engineered natural killer cells as drug carriers. Mol. Ther. 25, 2607–2619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Chandrasekaran, S., McGuire, M. J. & King, M. R. Sweeping lymph node micrometastases off their feet: an engineered model to evaluate natural killer cell mediated therapeutic intervention of circulating tumor cells that disseminate to the lymph nodes. Lab Chip 14, 118–127 (2014).

    Article  CAS  PubMed  Google Scholar 

  215. Reyes, A., Mohanty, A., Pharaon, R. & Massarelli, E. Association between immunosuppressive therapy utilized in the treatment of autoimmune disease or transplant and cancer progression. Biomedicines 11, 99 (2023).

    Article  CAS  Google Scholar 

  216. Desai, R. J. et al. Risk of serious infections associated with use of immunosuppressive agents in pregnant women with autoimmune inflammatory conditions: cohort study. Br. Med. J. 356, j895 (2017).

    Article  Google Scholar 

  217. Miller, S. D., Turley, D. M. & Podojil, J. R. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat. Rev. Immunol. 7, 665–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  218. Neumann, C. et al. c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host–microbiota homeostasis. Nat. Immunol. 20, 471–481 (2019).

    Article  CAS  PubMed  Google Scholar 

  219. Schorer, M. et al. Rapid expansion of Treg cells protects from collateral colitis following a viral trigger. Nat. Commun. 11, 1522 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Akbarpour, M. et al. Insulin B chain 9-23 gene transfer to hepatocytes protects from type 1 diabetes by inducing Ag-specific FoxP3+ Tregs. Sci. Transl. Med. 7, 289ra81 (2015).

    Article  PubMed  Google Scholar 

  222. Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 7, 315ra189 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Sun, C., Mezzadra, R. & Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity 48, 434–452 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Braleymullen, H., Tompson, J. G., Sharp, G. C. & Kyriakos, M. Suppression of experimental autoimmune thyroiditis in guinea pigs by pretreatment with thyroglobulin-coupled spleen cells. Cell. Immunol. 51, 408–413 (1980).

    Article  CAS  PubMed  Google Scholar 

  225. Fife, B. T. et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway. J. Exp. Med. 203, 2737–2747 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kontos, S., Kourtis, I. C., Dane, K. Y. & Hubbell, J. A. Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc. Natl Acad. Sci. USA 110, E60–E68 (2013).

    Article  CAS  PubMed  Google Scholar 

  227. Lorentz, K. M., Kontos, S., Diaceri, G., Henry, H. & Hubbell, J. A. Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase. Sci. Adv. 1, e1500112 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Lutterotti, A. et al. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci. Transl. Med. 5, 188ra75 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Chovatiya, R. & Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell 54, 281–288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Newton, K., Dixit, V. M. & Kayagaki, N. Dying cells fan the flames of inflammation. Science 374, 1076–1080 (2021).

    Article  CAS  PubMed  Google Scholar 

  231. Medzhitov, R. The spectrum of inflammatory responses. Science 374, 1070–1075 (2021).

    Article  CAS  PubMed  Google Scholar 

  232. Ma, Q. et al. Calming cytokine storm in pneumonia by targeted delivery of TPCA-1 using platelet-derived extracellular vesicles. Matter 3, 287–301 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Martinez, J. O. et al. Mesenchymal stromal cell‐mediated treatment of local and systemic inflammation through the triggering of an anti‐inflammatory response. Adv. Funct. Mater. 31, 2002997 (2020).

    Article  Google Scholar 

  234. Smith, W. J. et al. Cell-mediated assembly of phototherapeutics. Angew. Chem. Int. Ed. 53, 10945–10948 (2014).

    Article  CAS  Google Scholar 

  235. Brenner, J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9, 2684 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Adeoye, O. & Broderick, J. P. Advances in the management of intracerebral hemorrhage. Nat. Rev. Neurol. 6, 593–601 (2010).

    Article  CAS  PubMed  Google Scholar 

  237. Hou, J. et al. Accessing neuroinflammation sites: monocyte/neutrophil-mediated drug delivery for cerebral ischemia. Sci. Adv. 5, eaau8301 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Li, Y. et al. Ultrasound controlled anti-inflammatory polarization of platelet decorated microglia for targeted ischemic stroke therapy. Angew. Chem. Int. Ed. 60, 5083–5090 (2021).

    Article  CAS  Google Scholar 

  239. Xu, X. et al. Self-regulated hirudin delivery for anticoagulant therapy. Sci. Adv. 6, eabc0382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Mackman, N. Triggers, targets and treatments for thrombosis. Nature 451, 914–918 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Mackman, N., Bergmeier, W., Stouffer, G. A. & Weitz, J. I. Therapeutic strategies for thrombosis: new targets and approaches. Nat. Rev. Drug Discov. 19, 333–352 (2020).

    Article  CAS  PubMed  Google Scholar 

  242. Pisapia, J. M. et al. Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan. Exp. Neurol. 233, 357–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  243. Li, Z. et al. Cell‐based delivery systems: emerging carriers for immunotherapy. Adv. Funct. Mater. 31, 2100088 (2021).

    Article  CAS  Google Scholar 

  244. Santander, A. M. et al. Paracrine interactions between adipocytes and tumor cells recruit and modify macrophages to the mammary tumor microenvironment: the role of obesity and inflammation in breast adipose tissue. Cancers 7, 143–178 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Zhang, M. et al. Adipocyte-derived lipids mediate melanoma progression via FATP proteins. Cancer Discov. 8, 1006–1025 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Wen, D. et al. Adipocytes as anticancer drug delivery depot. Matter 1, 1203–1214 (2019).

    Article  Google Scholar 

  248. Ceballos Bolaños, C. et al. Optimization of a universal allogeneic CAR-T cells combining CRISPR and transposon-based technologies for treatment of acute myeloid leukemia. Blood 142, 3457 (2023).

    Article  Google Scholar 

  249. McGuirk, J. et al. A phase 1 dose escalation and cohort expansion study of the safety and efficacy of allogeneic CRISPR–Cas9-engineered T cells (CTX110) in patients (Pts) with relapsed or refractory (R/R) B-cell malignancies (CARBON). J. Clin. Oncol. 39, TPS7570 (2021).

    Article  Google Scholar 

  250. Mao, A. S. et al. Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. Proc. Natl Acad. Sci. USA 116, 15392–15397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Feng, M. et al. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 19, 568–586 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Lakhanpal, G. K. et al. The inositol phosphatase SHIP-1 is negatively regulated by Fli-1 and its loss accelerates leukemogenesis. Blood 116, 428–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  253. Zou, S. et al. Targeting STAT3 in cancer immunotherapy. Mol. Cancer 19, 145 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Tap, W. D. et al. Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): a randomised phase 3 trial. Lancet 394, 478–487 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Ramesh, A., Kumar, S., Nandi, D. & Kulkarni, A. CSF1R- and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Adv. Mater. 31, e1904364 (2019).

    Article  PubMed  Google Scholar 

  256. Helfinger, V. et al. Genetic deletion of Nox4 enhances cancerogen-induced formation of solid tumors. Proc. Natl Acad. Sci. USA 118, e2020152118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature 539, 443–447 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Ceylan, H., Giltinan, J., Kozielski, K. & Sitti, M. Mobile microrobots for bioengineering applications. Lab Chip 17, 1705–1724 (2017).

    Article  CAS  PubMed  Google Scholar 

  259. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2017).

    Article  CAS  Google Scholar 

  260. Wen, D. et al. Engineering protein delivery depots for cancer immunotherapy. Bioconjug. Chem. 30, 515–524 (2019).

    Article  CAS  PubMed  Google Scholar 

  261. Anselmo, A. C. et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7, 11129–11137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Wibroe, P. P. et al. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nat. Nanotechnol. 12, 589–594 (2017).

    Article  CAS  PubMed  Google Scholar 

  263. Liu, F. et al. Cryo-shocked tumor cells deliver CRISPR–Cas9 for lung cancer regression by synthetic lethality. Sci. Adv. 10, eadk8264 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Danielyan, K. et al. Cerebrovascular thromboprophylaxis in mice by erythrocyte-coupled tissue-type plasminogen activator. Circulation 118, 1442–1449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Ayer, M. et al. Biotin–NeutrAvidin mediated immobilization of polymer micro- and nanoparticles on T lymphocytes. Bioconjug. Chem. 32, 541–552 (2021).

    Article  CAS  PubMed  Google Scholar 

  266. Doshi, N. et al. Cell-based drug delivery devices using phagocytosis-resistant backpacks. Adv. Mater. 23, H105–H109 (2011).

    Article  CAS  PubMed  Google Scholar 

  267. Swiston, A. J. et al. Surface functionalization of living cells with multilayer patches. Nano Lett. 8, 4446–4453 (2008).

    Article  CAS  PubMed  Google Scholar 

  268. Chang, X. et al. Monocyte-derived multipotent cell delivered programmed therapeutics to reverse idiopathic pulmonary fibrosis. Sci. Adv. 6, eaba3167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Vickerman, B. M., O’Banion, C. P., Tan, X. & Lawrence, D. S. Light-controlled release of therapeutic proteins from red blood cells. ACS Cent. Sci. 7, 93–103 (2021).

    Article  CAS  PubMed  Google Scholar 

  270. Liu, L. et al. Nano-engineered lymphocytes for alleviating suppressive tumor immune microenvironment. Appl. Mater. Today 16, 273–279 (2019).

    Article  Google Scholar 

  271. Zhang, L. et al. Surface‐anchored nanogel coating endows stem cells with stress resistance and reparative potency via turning down the cytokine-receptor binding pathways. Adv. Sci. 8, 2003348 (2021).

    Article  CAS  Google Scholar 

  272. Loukogeorgakis, S. P. et al. Donor cell engineering with GSK3 inhibitor-loaded nanoparticles enhances engraftment after in utero transplantation. Blood 134, 1983–1995 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Research and Development Program of China (2021YFA0909900), National Natural Science Foundation of China (52233013), Key Project of Science and Technology Commission of Zhejiang Province (2024C03083, 2024C03085 and 2024C03168), Zhejiang University’s start-up packages, Fundamental Research Funds for the Central Universities (2021FZZX001-46), the Starry Night Science Fund at the Shanghai Institute for Advanced Study of Zhejiang University (SN-ZJU-SIAS-009) and Juvenile Diabetes Research Foundation (grant number 2-SRA-2021-1064-M-B). A.R.K. is supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through grant KL2TR002490.

Author information

Authors and Affiliations

Authors

Contributions

Z.G., J.W. and Y.W. conceived the project. All authors contributed to writing and revising the paper and approved the final version.

Corresponding authors

Correspondence to Jinqiang Wang or Zhen Gu.

Ethics declarations

Competing interests

Z.G. is the co-founder of Zenomics, Zcapsule and μZen. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary tables and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shi, J., Xin, M. et al. Cell–drug conjugates. Nat. Biomed. Eng (2024). https://doi.org/10.1038/s41551-024-01230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-024-01230-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research