Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A slightly oblate dark matter halo revealed by a retrograde precessing Galactic disk warp

Abstract

The shape of the dark matter (DM) halo is key to understanding the hierarchical formation of the Galaxy. Despite extensive efforts in recent decades, however, its shape remains a matter of debate, with suggestions ranging from strongly oblate to prolate. Here, we present a new constraint on its present shape by directly measuring the evolution of the Galactic disk warp with time, as traced by accurate distance estimates and precise age determinations for about 2,600 classical Cepheids. We show that the Galactic warp is mildly precessing in a retrograde direction at a rate of ω = −2.1 ± 0.5 (statistical) ± 0.6 (systematic) km s−1 kpc−1 for the outer disk over the Galactocentric radius [7.5, 25] kpc, decreasing with radius. This constrains the shape of the DM halo to be slightly oblate with a flattening (minor axis to major axis ratio) in the range 0.84 ≤ qΦ ≤ 0.96. Given the young nature of the disk warp traced by Cepheids (less than 200 Myr), our approach directly measures the shape of the present-day DM halo. This measurement, combined with other measurements from older tracers, could provide vital constraints on the evolution of the DM halo and the assembly history of the Galaxy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Milky Way’s three-dimensional disk warp and its precession traced by Cepheids.
Fig. 2: Constraining the shape of the DM halo from the measured precession rates.

Similar content being viewed by others

Data availability

The Cepheids data used in this paper are publicly available from the Gaia Archive: https://archives.esac.esa.int/gaia. The other data supporting the plots in this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

We use standard data analysis tools in the Python environments, including methods in Astropy, NumPy, Matplotlib, SciPy and emcee. All these packages are publicly available through the Python Package Index (https://pypi.org). Specifically, the fit analysis in this study was performed using the Python package scipy.curve_fit and emcee.

References

  1. Kerr, F. J. A Magellanic effect on the Galaxy. Astron. J. 62, 93 (1957).

    Article  ADS  Google Scholar 

  2. Burke, B. F. Systematic distortion of the outer regions of the Galaxy. Astron. J. 62, 90 (1957).

    Article  ADS  Google Scholar 

  3. Sancisi, R. Warped H i disks in galaxies. Astron. Astrophys. 53, 159–161 (1976).

    ADS  Google Scholar 

  4. López-Corredoira, M. et al. Old stellar Galactic disc in near-plane regions according to 2MASS: scales, cut-off, flare and warp. Astron. Astrophys. 394, 883–899 (2002).

    Article  ADS  Google Scholar 

  5. Chen, X. et al. An intuitive 3D map of the Galactic warp’s precession traced by classical Cepheids. Nat. Astron. 3, 320–325 (2019).

    Article  ADS  Google Scholar 

  6. Skowron, D. M. et al. A three-dimensional map of the Milky Way using classical Cepheid variable stars. Science 365, 478–482 (2019).

    Article  ADS  Google Scholar 

  7. Binney, J. Warps. Annu. Rev. Astron. Astrophys. 30, 51–74 (1992).

    Article  ADS  Google Scholar 

  8. Shen, J. & Sellwood, J. A. Galactic warps induced by cosmic infall. Mon. Not. R. Astron. Soc. 370, 2–14 (2006).

    Article  ADS  Google Scholar 

  9. Jiang, I.-G. & Binney, J. WARPS and cosmic infall. Mon. Not. R. Astron. Soc. 303, L7–L10 (1999).

    Article  ADS  Google Scholar 

  10. Jeon, M., Kim, S. S. & Ann, H. B. Galactic warps in triaxial halos. Astrophys. J. 696, 1899–1917 (2009).

    Article  ADS  Google Scholar 

  11. Sparke, L. S. & Casertano, S. A model for persistent galactic warps. Mon. Not. R. Astron. Soc. 234, 873–898 (1988).

    Article  ADS  Google Scholar 

  12. Dubinski, J. & Chakrabarty, D. Warps and bars from the external tidal torques of tumbling dark halos. Astrophys. J. 703, 2068–2081 (2009).

    Article  ADS  Google Scholar 

  13. Weinberg, M. D. & Blitz, L. A Magellanic origin for the warp of the Galaxy. Astrophys. J. Lett. 641, L33–L36 (2006).

    Article  ADS  Google Scholar 

  14. Battaner, E., Florido, E. & Sanchez-Saavedra, M. L. Intergalactic magnetic field and galactic warps. Astron. Astrophys. 236, 1–8 (1990).

    ADS  Google Scholar 

  15. Poggio, E. et al. Evidence of a dynamically evolving Galactic warp. Nat. Astron. 4, 590–596 (2020).

    Article  ADS  Google Scholar 

  16. Cheng, X. et al. Exploring the Galactic warp through asymmetries in the kinematics of the Galactic disk. Astrophys. J. 905, 49–63 (2020).

    Article  ADS  Google Scholar 

  17. Chrobáková, Ž. & López-Corredoira, M. A case against a significant detection of precession in the Galactic warp. Astrophys. J. 912, 130–138 (2021).

    Article  ADS  Google Scholar 

  18. Dehnen, W., Semczuk, M. & Schönrich, R. A twisted and precessing Cepheid warp in the outer Milky Way disc. Mon. Not. R. Astron. Soc. 523, 1556–1564 (2023).

    Article  ADS  Google Scholar 

  19. Gaia Collaboration. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1–A22 (2022).

    Article  Google Scholar 

  20. Ripepi, V. et al. Gaia Data Release 3. Specific processing and validation of all sky RR Lyrae and Cepheid stars: the Cepheid sample. Astron. Astrophys. 674, A17–A51 (2022).

    Article  Google Scholar 

  21. Hao, C. J. et al. Open clusters housing classical Cepheids in Gaia DR3. Astron. Astrophys. 668, A13–A25 (2022).

    Article  Google Scholar 

  22. De Somma, G. et al. Period–age–metallicity and period–age–colour–metallicity relations for classical Cepheids: an application to the Gaia EDR3 sample. Mon. Not. R. Astron. Soc. 508, 1473–1488 (2021).

    Article  ADS  Google Scholar 

  23. Zhou, X. & Chen, X. Galactic open cluster Cepheids – a census based on Gaia EDR3. Mon. Not. R. Astron. Soc. 504, 4768–4787 (2021).

    Article  ADS  Google Scholar 

  24. Poggio, E. et al. The kinematic signature of the Galactic warp in Gaia DR1. I. The Hipparcos subsample. Astron. Astrophys. 601, A115–A128 (2017).

    Article  Google Scholar 

  25. Burton, W. B. in Galactic and Extragalactic Radio Astronomy (eds Verschuur, G. L. & Kellermann, K. I.) 295–358 (Springer, 1988).

  26. Li, X.-Y. et al. Mapping the Galactic disk with the LAMOST and Gaia red clump sample. IV. The kinematic signature of the Galactic warp. Astrophys. J. 901, 56–61 (2020).

    Article  ADS  Google Scholar 

  27. Han, J. J., Conroy, C. & Hernquist, L. A tilted dark halo origin of the Galactic disk warp and flare. Nat. Astron. 7, 1481–1485 (2023).

    Article  ADS  Google Scholar 

  28. Sanders, J. L. & Binney, J. Stream–orbit misalignment. II. A new algorithm to constrain the Galactic potential. Mon. Not. R. Astron. Soc. 433, 1826–1836 (2013).

    Article  ADS  Google Scholar 

  29. Bovy, J. et al. The shape of the inner Milky Way Halo from observations of the Pal 5 and GD–1 stellar streams. Astrophys. J. 833, 31–45 (2016).

    Article  ADS  Google Scholar 

  30. Bowden, A., Belokurov, V. & Evans, N. W. Dipping our toes in the water: first models of GD-1 as a stream. Mon. Not. R. Astron. Soc. 449, 1391–1440 (2015).

    Article  ADS  Google Scholar 

  31. Küpper, A. H. W. et al. Globular cluster streams as Galactic high-precision scales—the poster child Palomar 5. Astrophys. J. 803, 80–105 (2015).

    Article  ADS  Google Scholar 

  32. Loebman, S. R. et al. The Milky Way tomography with Sloan Digital Sky Survey. V. Mapping the dark matter halo. Astrophys. J. 794, 151–176 (2014).

    Article  ADS  Google Scholar 

  33. Wegg, C., Gerhard, O. & Bieth, M. The gravitational force field of the Galaxy measured from the kinematics of RR Lyrae in Gaia. Mon. Not. R. Astron. Soc. 485, 3296–3316 (2019).

    Article  ADS  Google Scholar 

  34. Posti, L. & Helmi, A. Mass and shape of the Milky Way’s dark matter halo with globular clusters from Gaia and Hubble. Astron. Astrophys. 621, A56–A65 (2019).

    Article  ADS  Google Scholar 

  35. Cataldi, P. et al. Redshift evolution of the dark matter haloes shapes. Mon. Not. R. Astron. Soc. 523, 1919–1932 (2023).

    Article  ADS  Google Scholar 

  36. GRAVITY Collaboration. A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty. Astron. Astrophys. 625, L10–L19 (2019).

    Article  ADS  Google Scholar 

  37. Jurić, M. et al. The Milky Way tomography with SDSS. I. Stellar number density distribution. Astrophys. J. 673, 864–914 (2008).

    Article  ADS  Google Scholar 

  38. Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).

    Article  ADS  Google Scholar 

  39. Reid, M. J. & Brunthaler, A. The proper motion of Sagittarius A*. II. The mass of Sagittarius A*. Astrophys. J. 616, 872–884 (2004).

    Article  ADS  Google Scholar 

  40. Clementini, G. et al. Gaia Data Release 3. Specific processing and validation of all-sky RR Lyrae and Cepheid stars: the RR Lyrae sample. Astron. Astrophys. 674, A18–A69 (2023).

    Article  Google Scholar 

  41. Negueruela, I. et al. Berkeley 51, a young open cluster with four yellow supergiants. Mon. Not. R. Astron. Soc. 477, 2976–2990 (2018).

    Article  ADS  Google Scholar 

  42. Feast, M. W. & Catchpole, R. M. The Cepheid period-luminosity zero-point from HIPPARCOS trigonometrical parallaxes. Mon. Not. R. Astron. Soc. 286, L1–L5 (1997).

    Article  ADS  Google Scholar 

  43. Hayden, M. R. et al. Chemical cartography with APOGEE: large-scale mean metallicity maps of the Milky Way disk. Astron. J. 147, 116–131 (2014).

    Article  ADS  Google Scholar 

  44. Huang, Y. et al. On the metallicity gradients of the Galactic disk as revealed by LSS-GAC red clump stars. Res. Astron. Astrophys. 15, 1240–1263 (2015).

    Article  ADS  Google Scholar 

  45. da Silva, R. et al. Oxygen, sulfur, and iron radial abundance gradients of classical Cepheids across the Galactic thin disk. Astron. Astrophys. 678, A195–A215 (2023).

    Article  Google Scholar 

  46. Zhou, Y. et al. The circular velocity curve of the Milky Way from 5–25 kpc using luminous red giant branch stars. Astrophys. J. 946, 73–87 (2023).

    Article  ADS  Google Scholar 

  47. Antoja, T. et al. A dynamically young and perturbed Milky Way disk. Nature 561, 360–362 (2018).

    Article  ADS  Google Scholar 

  48. Flynn, C. et al. On the mass-to-light ratio of the local Galactic disc and the optical luminosity of the Galaxy. Mon. Not. R. Astron. Soc. 372, 1149–1160 (2016).

    Article  ADS  Google Scholar 

  49. Bovy, J. & Rix, H.-W. A direct dynamical measurement of the Milky Way’s disk surface density profile, disk scale length, and dark matter profile at 4 kpc <  < 9̃ kpc. Astrophys. J. 779, 115–144 (2013).

    Article  ADS  Google Scholar 

  50. Bland-Hawthorn, J. & Gerhard, O. The Galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–569 (2016).

    Article  ADS  Google Scholar 

  51. Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996).

    Article  ADS  Google Scholar 

  52. Binney, J. & Tremaine, S. Galactic Dynamics 2nd edn (Princeton Univ. Press, 2008).

Download references

Acknowledgements

Y.H. acknowledges the National Key R&D Programme of China (Grant No. 2019YFA0405503) and the National Science Foundation of China (NSFC; Grant Nos. 11903027 and 11833006). T.K. acknowledges support from the NSFC (Grant No. 12303013) and support from the China Postdoctoral Science Foundation (Grant No. 2023M732250). H.W.Z. acknowledges the National Key R&D Programme of China (Grant No. 2019YFA0405504) and the NSFC (Grant Nos. 12090040 and 12090044). J.F.L. acknowledges support from the NSFC (Grant Nos. 11988101 and 11933004) and support from the New Cornerstone Science Foundation through the New Cornerstone Investigator Programme and the XPLORER PRIZE. J.S. acknowledges support from the NSFC (Grant Nos. 12025302 and 11773052), support from the 111 Project of the Ministry of Education of China (Grant No. B20019) and support from the China Manned Space Project (Grant No. CMS-CSST-2021-B03). J.S. also acknowledges support from a Newton Advanced Fellowship awarded by the Royal Society and the Newton Fund. J.S. also acknowledges support from the Gravity Supercomputer at the Department of Astronomy, Shanghai Jiao Tong University, and the Center for High Performance Computing at Shanghai Astronomical Observatory. T.C.B. acknowledges partial support for this work from an award by the US National Science Foundation to the Physics Frontier Center/JINA Center for the Evolution of the Elements (Grant No. PHY 14-30152) and from an award by the US National Science Foundation to the International Research Network for Nuclear Astrophysics (Grant No. OISE-1927130). S.W. acknowledges support from the NSFC (Grant No. 12273057). We also express thanks for the valuable suggestions and comments from the Frontier Discussion of Top Sciences, regularly held at the National Astronomical Observatories, Chinese Academy of Sciences, where we presented the main results of this study on 28 October 2022. This work presents results from the European Space Agency’s space mission Gaia. Gaia data are processed by the Gaia Data Processing and Analysis Consortium, which is funded by national institutions, in particular the institutions participating in the Gaia MultiLateral Agreement. The Gaia mission website is https://www.cosmos.esa.int/gaia. The Gaia Archive website is https://archives.esac.esa.int/gaia.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. contributed to the design of this project and writing of the final paper. Q.K.F. contributed to sample preparation, modelling and data analysis and wrote the manuscript together with Y.H. T.K. contributed to the data analysis and revisions of the text. H.W.Z. contributed to the project planning and research support. J.F.L. contributed to the design of this project and revised the text. T.C.B. contributed to the interpretation and revisions of the text. J.S. contributed to the theoretical computation of the warp-precession rate, interpretation of the result and text revision. Y.J.L. contributed to the interpretation of the result. S.W. and H.B.Y. contributed to the data analysis and revisions of the text.

Corresponding authors

Correspondence to Yang Huang, Huawei Zhang, Jifeng Liu or Juntai Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The age distribution of our final Cepheid sample.

Their ages are derived by the PAZ relation. Most of our sample stars are younger than 200 Myr.

Extended Data Fig. 2 The spatial distribution of the final sample of 2,613 Cepheids.

(a) The X -Y projection. The black dot and red star represent the location of the Galactic centre and the Sun, respectively. (b) The Y - Z projection. The red line denotes the best-fit model with Galactic azimuth angle ϕ = ± 50. Note that the warp amplitude is exaggerated, as the Y - Z axes are not on the same scale.

Extended Data Fig. 3 The residual precession rates, after subtracting the disk contributions, in the three radial bins.

In the range of 2 to 4 kpc for Rd,thin, all the residual precession rates are clearly non-zero.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Feng, Q., Khachaturyants, T. et al. A slightly oblate dark matter halo revealed by a retrograde precessing Galactic disk warp. Nat Astron (2024). https://doi.org/10.1038/s41550-024-02309-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-024-02309-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing