Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Using a new analytic approach for genotyping and phenotyping chromosome 9p deletion syndrome

Abstract

Using a new analytic method (“unique non-overlapping region” (UNOR) analysis), we characterized the genotypes and phenotypes of a large cohort of individuals diagnosed with chromosome 9p deletion syndrome (9PMS) and defined critical genomic regions. We extracted phenotypic information from 48 individuals with 9PMS from medical records and used a guided interview with caregivers to clarify ambiguities. Using high-resolution whole-genome sequencing for breakpoint definition, we aligned deletions and drew virtual breakpoints to obtain UNORs associated with phenotypic characteristics. We next extracted genotype and phenotype data for 57 individuals identified from a systematic review of the 9PMS literature and analyzed these as above. Common phenotypic features included developmental delay/intellectual disability, dysmorphic features, hypotonia, genital defects in XY individuals, psychiatric diagnoses, chronic constipation, atopic disease, vision problems, autism spectrum disorder, gastroesophageal reflux disease, trigonocephaly, congenital heart disease, and neonatal hypoglycemia. Our approach confirmed previous literature reports of an association of FREM1 with trigonocephaly and suggested a possible modifier element for this phenotype. In conclusion, the UNOR approach delineated phenotypic characteristics for 9PMS and confirmed the critical role of FREM1 and a possible long-distance regulatory element in pathogenesis of trigonocephaly that will need to be replicated in future studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the delimitation of unique non-overlapping regions (UNORs).
Fig. 2: Flowchart of systematic review results.
Fig. 3: Maximal overlapping regions.
Fig. 4: Unique non-overlapping region (UNOR) analysis per phenotype.

Similar content being viewed by others

Data availability

Data are available for sharing upon request. Limitations to data sharing may include privacy concerns for the individuals included in the study apply for data sharing.

References

  1. Alfi OS, Donnell GN, Derencsenyi A. The 9p-syndrome. Birth Defects Orig Artic Ser. 1976;12:157–60.

    CAS  PubMed  Google Scholar 

  2. Alfi OS, Donnell GN, Allderdice PW, Derencsenyi A. The 9p- syndrome. Ann Genet. 1976;19:11–6.

    CAS  PubMed  Google Scholar 

  3. Sams EI, Ng JK, Tate V, Claire Hou YC, Cao Y, Antonacci-Fulton L, et al. From karyotypes to precision genomics in 9p deletion and duplication syndromes. HGG Adv. 2022;3:100081. https://doi.org/10.1016/j.xhgg.2021.100081.

    Article  CAS  PubMed  Google Scholar 

  4. Calvari V, Bertini V, De Grandi A, Peverali G, Zuffardi O, Ferguson-Smith M, et al. A new submicroscopic deletion that refines the 9p region for sex reversal. Genomics. 2000;65:203–12. https://doi.org/10.1006/geno.2000.6160.

    Article  CAS  PubMed  Google Scholar 

  5. Muroya K, Okuyama T, Goishi K, Ogiso Y, Fukuda S, Kameyama J, et al. Sex-determining gene(s) on distal 9p: clinical and molecular studies in six cases. J Clin Endocrinol Metab. 2000;85:3094–100. https://doi.org/10.1210/jcem.85.9.6771.

    Article  CAS  PubMed  Google Scholar 

  6. Ounap K, Uibo O, Zordania R, Kiho L, Ilus T, Oiglane-Shlik E, et al. Three patients with 9p deletions including DMRT1 and DMRT2: a girl with XY complement, bilateral ovotestes, and extreme growth retardation, and two XX females with normal pubertal development. Am J Med Genet A. 2004;130A:415–23. https://doi.org/10.1002/ajmg.a.30269.

    Article  CAS  PubMed  Google Scholar 

  7. Barbaro M, Balsamo A, Anderlid BM, Myhre AG, Gennari M, Nicoletti A, et al. Characterization of deletions at 9p affecting the candidate regions for sex reversal and deletion 9p syndrome by MLPA. Eur J Hum Genet. 2009;17:1439–47. https://doi.org/10.1038/ejhg.2009.70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Faas BH, de Leeuw N, Mieloo H, Bruinenberg J, de Vries BB. Further refinement of the candidate region for monosomy 9p syndrome. Am J Med Genet A. 2007;143A:2353–6. https://doi.org/10.1002/ajmg.a.31961.

    Article  PubMed  Google Scholar 

  9. Vissers LE, Cox TC, Maga AM, Short KM, Wiradjaja F, Janssen IM, et al. Heterozygous mutations of FREM1 are associated with an increased risk of isolated metopic craniosynostosis in humans and mice. PLoS Genet. 2011;7:e1002278 https://doi.org/10.1371/journal.pgen.1002278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mohamed AM, Kamel AK, Eid MM, Eid OM, Mekkawy M, Hussein SH, et al. Chromosome 9p terminal deletion in nine Egyptian patients and narrowing of the critical region for trigonocephaly. Mol Genet Genomic Med. 2021;9:e1829 https://doi.org/10.1002/mgg3.1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81. https://doi.org/10.1016/j.jbi.2008.08.010.

    Article  PubMed  Google Scholar 

  12. Vinci G, Chantot-Bastaraud S, El Houate B, Lortat-Jacob S, Brauner R, McElreavey K. Association of deletion 9p, 46,XY gonadal dysgenesis and autistic spectrum disorder. Mol Hum Reprod. 2007;13:685–9. https://doi.org/10.1093/molehr/gam045.

    Article  CAS  PubMed  Google Scholar 

  13. Hauge X, Raca G, Cooper S, May K, Spiro R, Adam M, et al. Detailed characterization of, and clinical correlations in, 10 patients with distal deletions of chromosome 9p. Genet Med. 2008;10:599–611. https://doi.org/10.1097/gim.0b013e31817e2bde.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen CP, Su YN, Chern SR, Hsu CY, Tsai FJ, Wu PC, et al. Inv dup del(9p): prenatal diagnosis and molecular cytogenetic characterization by fluorescence in situ hybridization and array comparative genomic hybridization. Taiwan J Obstet Gynecol. 2011;50:67–73. https://doi.org/10.1016/j.tjog.2011.01.038.

    Article  PubMed  Google Scholar 

  15. Freitas É, Gribble SM, Simioni M, Vieira TP, Silva-Grecco RL, Balarin MA, et al. Maternally inherited partial monosomy 9p (pter→p24.1) and partial trisomy 20p (pter→p12.1) characterized by microarray comparative genomic hybridization. Am J Med Genet A. 2011;155A:2754–61. https://doi.org/10.1002/ajmg.a.34168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meloni VeF, Piazzon FB, Soares MeF, Takeno SS, Christofolini DM, Kulikowski LD, et al. Cytogenomic characterization of an unexpected 17.6 Mb 9p deletion associated to a 14.8 Mb 20p duplication in a dysmorphic patient with multiple congenital anomalies presenting a normal G-banding karyotype. Gene. 2012;496:59–62. https://doi.org/10.1016/j.gene.2012.01.007.

    Article  CAS  PubMed  Google Scholar 

  17. Recalcati MP, Bellini M, Norsa L, Ballarati L, Caselli R, Russo S, et al. Complex rearrangement involving 9p deletion and duplication in a syndromic patient: genotype/phenotype correlation and review of the literature. Gene. 2012;502:40–5. https://doi.org/10.1016/j.gene.2012.04.030.

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y, Wang C, Wang F, Zhu L, Liu H, He X. Novel chromosomal translocation t(11;9)(p15;p23) involving deletion and duplication of 9p in a girl associated with autism and mental retardation. Gene. 2012;502:154–8. https://doi.org/10.1016/j.gene.2012.04.036.

    Article  CAS  PubMed  Google Scholar 

  19. Onesimo R, Orteschi D, Scalzone M, Rossodivita A, Nanni L, Zannoni GF, et al. Chromosome 9p deletion syndrome and sex reversal: novel findings and redefinition of the critically deleted regions. Am J Med Genet A. 2012;158A:2266–71. https://doi.org/10.1002/ajmg.a.35489.

    Article  CAS  PubMed  Google Scholar 

  20. Kowalczyk M, Tomaszewska A, Podbioł-Palenta A, Constantinou M, Wawrzkiewicz-Witkowska A, Kowalski J, et al. Another rare case of a child with de novo terminal 9p deletion and co-existing interstitial 9p duplication: clinical findings and molecular cytogenetic study by array-CGH. Cytogenet Genome Res. 2013;139:9–16. https://doi.org/10.1159/000342165.

    Article  CAS  PubMed  Google Scholar 

  21. Hu J, Sathanoori M, Kochmar S, Madan-Khetarpal S, McGuire M, Surti U. Co-existence of 9p deletion and Silver-Russell syndromes in a patient with maternally inherited cryptic complex chromosome rearrangement involving chromosomes 4, 9, and 11. Am J Med Genet A. 2013;161A:179–84. https://doi.org/10.1002/ajmg.a.35658.

    Article  CAS  PubMed  Google Scholar 

  22. Mitsui N, Shimizu K, Nishimoto H, Mochizuki H, Iida M, Ohashi H. Patient with terminal 9 Mb deletion of chromosome 9p: refining the critical region for 9p monosomy syndrome with trigonocephaly. Congenit Anom. 2013;53:49–53. https://doi.org/10.1111/j.1741-4520.2012.00362.x.

    Article  CAS  Google Scholar 

  23. la Cour Sibbesen E, Jespersgaard C, Alosi D, Bisgaard AM, Tümer Z. Ring chromosome 9 in a girl with developmental delay and dysmorphic features: case report and review of the literature. Am J Med Genet A. 2013;161A:1447–52. https://doi.org/10.1002/ajmg.a.35901.

    Article  PubMed  Google Scholar 

  24. Quinonez SC, Park JM, Rabah R, Owens KM, Yashar BM, Glover TW, et al. 9p partial monosomy and disorders of sex development: review and postulation of a pathogenetic mechanism. Am J Med Genet A. 2013;161A:1882–96. https://doi.org/10.1002/ajmg.a.36018.

    Article  CAS  PubMed  Google Scholar 

  25. Chen CP, Su YN, Chen CY, Chern SR, Wu PS, Su JW, et al. Prenatal diagnosis and molecular cytogenetic characterization of a de novo pure distal 9p deletion and literature review. Genomics. 2013;102:265–9. https://doi.org/10.1016/j.ygeno.2013.08.003.

    Article  CAS  PubMed  Google Scholar 

  26. Cisternino M, Della Mina E, Losa L, Madè A, Rossetti G, Bassi LA, et al. Idiopathic central precocious puberty associated with 11 mb de novo distal deletion of the chromosome 9 short arm. Case Rep Genet. 2013;2013:978087. https://doi.org/10.1155/2013/978087.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Day-Williams AG, Sun C, Jelcic I, McLaughlin H, Harris T, Martin R, et al. Whole genome sequencing reveals a chromosome 9p deletion causing DOCK8 deficiency in an adult diagnosed with hyper IgE syndrome who developed progressive multifocal leukoencephalopathy. J Clin Immunol. 2015;35:92–6. https://doi.org/10.1007/s10875-014-0114-4.

    Article  PubMed  Google Scholar 

  28. Cakmak-Genc G, Karakas-Celik S, Dursun A, Piskin İ. Partial trisomy 4q and partial monosomy 9p in a girl with choanal atresia and various dysmorphic findings. Gene. 2015;568:211–4. https://doi.org/10.1016/j.gene.2015.05.022.

    Article  CAS  PubMed  Google Scholar 

  29. Spazzapan P, Arnaud E, Baujat G, Nizon M, Malan V, Brunelle F, et al. Clinical and neuroradiological features of the 9p deletion syndrome. Childs Nerv Syst. 2016;32:327–35. https://doi.org/10.1007/s00381-015-2957-2.

    Article  PubMed  Google Scholar 

  30. Tassano E, Accogli A, Pavanello M, Bruno C, Capra V, Gimelli G, et al. Interstitial 9p24.3 deletion involving only DOCK8 and KANK1 genes in two patients with non-overlapping phenotypic traits. Eur J Med Genet. 2016;59:20–5. https://doi.org/10.1016/j.ejmg.2015.11.011.

    Article  PubMed  Google Scholar 

  31. Chen CP, Lin CJ, Chern SR, Wu PS, Chen YN, Chen SW, et al. Prenatal diagnosis and molecular cytogenetic characterization of a de novo unbalanced reciprocal translocation of der(9)t(9;14)(p24.2;q32.11) associated with 9p terminal deletion and 14q distal duplication. Taiwan J Obstet Gynecol. 2016;55:596–601. https://doi.org/10.1016/j.tjog.2016.06.008.

    Article  PubMed  Google Scholar 

  32. Hou QF, Wu D, Chu Y, Liao SX. Clinical findings and molecular cytogenetic study of de novo pure chromosome 9p deletion: pre- and postnatal diagnosis. Taiwan J Obstet Gynecol. 2016;55:867–70. https://doi.org/10.1016/j.tjog.2016.11.001.

    Article  PubMed  Google Scholar 

  33. Jia X, Liu XY, Duan XC. A case of 9p deletion syndrome with congenital infantile glaucoma, effective method of diagnosis, and treatment. Int J Ophthalmol. 2017;10:318–20. https://doi.org/10.18240/ijo.2017.02.23.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bayat A, Kirchhoff M, Madsen CG, Kreiborg S. Neonatal hyperinsulinemic hypoglycemia in a patient with 9p deletion syndrome. Eur J Med Genet. 2018;61:473–7. https://doi.org/10.1016/j.ejmg.2018.03.009.

    Article  PubMed  Google Scholar 

  35. Bruni V, Roppa K, Scionti F, Apa R, Sestito S, Di Martino MT, et al. A 46,XY female with a 9p24.3p24.1 deletion and a 8q24.11q24.3 duplication: a case report and review of the literature. Cytogenet Genome Res. 2019;158:74–82. https://doi.org/10.1159/000500619.

    Article  CAS  PubMed  Google Scholar 

  36. Fredette ME, Cusmano K, Phornphutkul C, Schwab J, Caldamone A, Topor LS. Early-onset gonadoblastoma in a 13-month-old infant with 46,XY complete gonadal dysgenesis identified with prenatal testing: a case of chromosome 9p deletion. AACE Clin Case Rep. 2019;5:e380–e3. https://doi.org/10.4158/ACCR-2019-0285.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Leung KCP, Ko TCS. Identification of a possible association of JAK2 in development of microphthalmia, anophthalmia, and coloboma (MAC) complex in a child with 9p deletion and duplication. Ophthalmic Genet. 2020;41:373–6. https://doi.org/10.1080/13816810.2020.1776338.

    Article  CAS  PubMed  Google Scholar 

  38. Banerjee I, Senniappan S, Laver TW, Caswell R, Zenker M, Mohnike K, et al. Refinement of the critical genomic region for congenital hyperinsulinism in the Chromosome 9p deletion syndrome. Wellcome Open Res. 2019;4:149 https://doi.org/10.12688/wellcomeopenres.15465.2.

    Article  CAS  PubMed  Google Scholar 

  39. Chai H, Ji W, Wen J, DiAdamo A, Grommisch B, Hu Q, et al. Ring chromosome formation by intra-strand repairing of subtelomeric double stand breaks and clinico-cytogenomic correlations for ring chromosome 9. Am J Med Genet A. 2020;182:3023–8. https://doi.org/10.1002/ajmg.a.61890.

    Article  CAS  PubMed  Google Scholar 

  40. Karba BE, Lemay JF, McLeod SA. The clinical dilemma of autism spectrum disorder diagnosis in a child with 9p deletion. J Pediatr Genet. 2021;10:250–2. https://doi.org/10.1055/s-0040-1713431.

    Article  PubMed  Google Scholar 

  41. Yao YY, Zhang CC, Bi H, Zhu F. Prenatal diagnosis of de novo isochromosome 4p with an unbalanced t(4;9) translocation in a fetus with congenital anomalies: a case report and literature review. Taiwan J Obstet Gynecol. 2022;61:157–62. https://doi.org/10.1016/j.tjog.2021.11.028.

    Article  PubMed  Google Scholar 

  42. Alghamdi M, Alhumsi TR, Altweijri I, Alkhamis WH, Barasain O, Cardona-Londoño KJ, et al. Clinical and genetic characterization of craniosynostosis in Saudi Arabia. Front Pediatr. 2021;9:582816 https://doi.org/10.3389/fped.2021.582816.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Di Rocco F, Rossi M, Verlut I, Szathmari A, Beuriat PA, Chatron N, et al. Clinical interest of molecular study in cases of isolated midline craniosynostosis. Eur J Hum Genet. 2023;31:621–8. https://doi.org/10.1038/s41431-023-01295-y.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fujimoto Y, Okuyama T, Iijima M, Tanaka T, Horikawa R, Yamada K, et al. Genitourinary phenotype in XX patients with distal 9p monosomy. Mol Genet Metab. 2004;82:173–9. https://doi.org/10.1016/j.ymgme.2004.04.003.

    Article  CAS  PubMed  Google Scholar 

  45. Hou WC, Chen CP, Hwang KS, Chen YC, Lai YJ, Tien CY, et al. Prenatal diagnosis of a de novo 9p terminal chromosomal deletion in a fetus with major congenital anomalies. Taiwan J Obstet Gynecol. 2014;53:602–5. https://doi.org/10.1016/j.tjog.2014.09.005.

    Article  PubMed  Google Scholar 

  46. Güneş S, Ekinci Ö, Ekinci N, Toros F. Coexistence of 9p deletion syndrome and autism spectrum disorder. J Autism Dev Disord. 2017;47:520–1. https://doi.org/10.1007/s10803-016-2943-x.

    Article  PubMed  Google Scholar 

  47. Ng J, Sams E, Baldridge D, Kremitzki M, Wegner DJ, Lindsay T, et al. Precise breakpoint detection in a patient with 9p- syndrome. Cold Spring Harb Mol Case Stud. 2020;6. https://doi.org/10.1101/mcs.a005348.

  48. Pugnaloni F, Onesimo R, Blandino R, Putotto C, Versacci P, Delogu AB, et al. Insights into the cardiac phenotype in 9p deletion syndrome: a multicenter Italian experience and literature review. Genes. 2023;14. https://doi.org/10.3390/genes14010146.

  49. Miceli M, Failla P, Saccuzzo L, Galesi O, Amata S, Romano C, et al. Trait-driven analysis of the 2p15p16.1 microdeletion syndrome suggests a complex pattern of interactions between candidate genes. Genes Genom. 2023;45:491–505. https://doi.org/10.1007/s13258-023-01369-7.

    Article  CAS  Google Scholar 

  50. Alazami AM, Shaheen R, Alzahrani F, Snape K, Saggar A, Brinkmann B, et al. FREM1 mutations cause bifid nose, renal agenesis, and anorectal malformations syndrome. Am J Hum Genet. 2009;85:414–8. https://doi.org/10.1016/j.ajhg.2009.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Slavotinek AM, Baranzini SE, Schanze D, Labelle-Dumais C, Short KM, Chao R, et al. Manitoba-oculo-tricho-anal (MOTA) syndrome is caused by mutations in FREM1. J Med Genet. 2011;48:375–82. https://doi.org/10.1136/jmg.2011.089631.

    Article  CAS  PubMed  Google Scholar 

  52. Swinkels ME, Simons A, Smeets DF, Vissers LE, Veltman JA, Pfundt R, et al. Clinical and cytogenetic characterization of 13 Dutch patients with deletion 9p syndrome: delineation of the critical region for a consensus phenotype. Am J Med Genet A. 2008;146A:1430–8. https://doi.org/10.1002/ajmg.a.32310.

    Article  CAS  PubMed  Google Scholar 

  53. Shimojima K, Yamamoto T. Investigation of the candidate region for trigonocephaly in a patient with monosomy 9p syndrome using array-CGH. Am J Med Genet A. 2009;149A:1076–80. https://doi.org/10.1002/ajmg.a.32783.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff of Washington University in Saint Louis and to the Chromosome 9p Minus Network for the critical help in all stages of this project. The authors are also grateful to Dr. Marwan Shinawi for critical insight on methods and findings.

Funding

This study was supported by anonymous charitable donation, as well as by Washington University in Saint Louis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RTS, YCCH, TNT, FSC, JM, PD; data curation: RTS, NJ, SC, RS, DE, VT, EIS, KV, TA, YCCH, TNT; formal analysis: RTS, YCCH, TNT, FSC, JM, PD; funding acquisition: TNT, FSC, JM, PD; investigation: RTS, NJ, EIS, KV, TA, YCCH, TNT, PD; methodology: RTS, SC, VT, EIS, KV, TA, TNT, JM, PD; project administration: SC, VT, TNT, FSC, JM, PD; supervision: TNT, FSC, JM, PD; visualization: RTS, EIS, KV, TA, TNT; writing – original draft: RTS, NJ, SC; writing – review and editing: RTS, NJ, SC, RS, DE, YCCH, TNT, FSC, JM, PD.

Corresponding author

Correspondence to Rodrigo Tzovenos Starosta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Washington University in Saint Louis IRB. Informed consent was obtained from all participants or, as applicable, their legal guardians, as required by the IRB. All clinical data were de-identified. This study adheres to the principles outlaid in the Declaration of Helsinki and the Belmont Report.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starosta, R.T., Jensen, N., Couteranis, S. et al. Using a new analytic approach for genotyping and phenotyping chromosome 9p deletion syndrome. Eur J Hum Genet (2024). https://doi.org/10.1038/s41431-024-01667-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41431-024-01667-y

Search

Quick links