Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Aberrant PGC-1α signaling in a lamb model of persistent pulmonary hypertension of the newborn

Abstract

Background

Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by elevated pulmonary vascular resistance (PVR), resulting in hypoxemia. Impaired angiogenesis contributes to high PVR. Pulmonary artery endothelial cells (PAECs) in PPHN exhibit decreased mitochondrial respiration and angiogenesis. We hypothesize that Peroxisome Proliferator-Activated Receptor Gamma Co-Activator-1α (PGC-1α) downregulation leads to reduced mitochondrial function and angiogenesis in PPHN.

Methods

Studies were performed in PAECs isolated from fetal lambs with PPHN induced by ductus arteriosus constriction, with gestation-matched controls and in normal human umbilical vein endothelial cells (HUVECs). PGC-1α was knocked downed in control lamb PAECs and HUVECs and overexpressed in PPHN PAECs to investigate the effects on mitochondrial function and angiogenesis.

Results

PPHN PAECs had decreased PGC-1α expression compared to controls. PGC-1α knockdown in HUVECs led to reduced Nuclear Respiratory Factor-1 (NRF-1), Transcription Factor-A of Mitochondria (TFAM), and mitochondrial electron transport chain (ETC) complexes expression. PGC-1α knockdown in control PAECs led to decreased in vitro capillary tube formation, cell migration, and proliferation. PGC-1α upregulation in PPHN PAECs led to increased ETC complexes expression and improved tube formation, cell migration, and proliferation.

Conclusion

PGC-1α downregulation contributes to reduced mitochondrial oxidative phosphorylation through control of the ETC complexes, thereby affecting angiogenesis in PPHN.

Impact

  • Reveals a novel mechanism for angiogenesis dysfunction in persistent pulmonary hypertension of the newborn (PPHN).

  • Identifies a key mitochondrial transcription factor, Peroxisome Proliferator-Activated Receptor Gamma Co-Activator-1α (PGC-1α), as contributing to the altered adaptation and impaired angiogenesis function that characterizes PPHN through its regulation of mitochondrial function and oxidative phosphorylation.

  • May provide translational significance as this mechanism offers a new therapeutic target in PPHN, and efforts to restore PGC-1α expression may improve postnatal transition in PPHN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunoblotting for PGC-1α protein levels in lamb PAECs.
Fig. 2: Immunoblotting for mitochondrial transcription factors and mitochondrial electron transport chain (ETC) complex proteins following PGC-1α knockdown (KD).
Fig. 3: Immunoblotting for mitochondrial electron transport chain (ETC) complex proteins following PGC-1α overexpression (OE).
Fig. 4: Tube formation assay comparing control and PPHN PAECs with genetically-modified PGC-1α expression.
Fig. 5: Angiogenesis assays comparing control and PPHN PAECs with genetically-modified PGC-1α expression.
Fig. 6: Assessing PGC-1α’s role in the regulation of mitochondrial biogenesis and redox balance in lamb PAECs.

Similar content being viewed by others

References

  1. Konduri, G. G. & Kim, U. O. Advances in the diagnosis and management of persistent pulmonary hypertension of the newborn. Pediatr. Clin. North Am. 56, 579–600 (2009).

    PubMed  PubMed Central  Google Scholar 

  2. Nair, J. & Lakshminrusimha, S. Update on Pphn: mechanisms and treatment. Semin Perinatol. 38, 78–91 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Steurer, M. A. et al. Persistent pulmonary hypertension of the newborn in late preterm and term infants in California. Pediatrics 139, e20161165 (2017).

  4. Walsh-Sukys, M. C. et al. Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatrics 105, 14–20 (2000).

    CAS  PubMed  Google Scholar 

  5. Van Meurs, K. P. et al. Inhaled nitric oxide for premature infants with severe respiratory failure. N. Engl. J. Med. 353, 13–22 (2005).

    PubMed  Google Scholar 

  6. Kumar, V. H. et al. Characteristics of pulmonary hypertension in preterm neonates. J. Perinatol. 27, 214–219 (2007).

    CAS  PubMed  Google Scholar 

  7. Abman, S. H., Kinsella, J. P., Schaffer, M. S. & Wilkening, R. B. Inhaled nitric oxide in the management of a premature newborn with severe respiratory distress and pulmonary hypertension. Pediatrics 92, 606–609 (1993).

    CAS  PubMed  Google Scholar 

  8. Arjaans, S. et al. Clinical significance of early pulmonary hypertension in preterm infants. J. Pediatr. 251, 74–81.e73 (2022).

    PubMed  Google Scholar 

  9. Konduri, G. G. et al. A randomized trial of early versus standard inhaled nitric oxide therapy in term and near-term newborn infants with hypoxic respiratory failure. Pediatrics 113, 559–564 (2004).

    PubMed  Google Scholar 

  10. Porta, N. F. & Steinhorn, R. H. Pulmonary vasodilator therapy in the nicu: inhaled nitric oxide, sildenafil, and other pulmonary vasodilating agents. Clin. Perinatol. 39, 149–164 (2012).

    PubMed  PubMed Central  Google Scholar 

  11. Ramachandrappa, A., Rosenberg, E. S., Wagoner, S. & Jain, L. Morbidity and mortality in late preterm infants with severe hypoxic respiratory failure on extra-corporeal membrane oxygenation. J. Pediatr. 159, 192–198.e193 (2011).

    PubMed  PubMed Central  Google Scholar 

  12. Wedgwood, S. & Steinhorn, R. H. Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxid. Redox Signal 21, 1926–1942 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao, Y. & Raj, J. U. Regulation of the pulmonary circulation in the fetus and newborn. Physiol. Rev. 90, 1291–1335 (2010).

    CAS  PubMed  Google Scholar 

  14. Gien, J., Seedorf, G. J., Balasubramaniam, V., Markham, N. & Abman, S. H. Intrauterine pulmonary hypertension impairs angiogenesis in vitro: role of vascular endothelial growth factor nitric oxide signaling. Am. J. Respir. Crit. Care Med. 176, 1146–1153 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Teng, R. J. et al. Amp kinase activation improves angiogenesis in pulmonary artery endothelial cells with in utero pulmonary hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 304, L29–L42 (2013).

    CAS  PubMed  Google Scholar 

  16. Abman, S. H., Shanley, P. F. & Accurso, F. J. Failure of postnatal adaptation of the pulmonary circulation after chronic intrauterine pulmonary hypertension in fetal lambs. J. Clin. Investig. 83, 1849–1858 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wild, L. M., Nickerson, P. A. & Morin, F. C. 3rd Ligating the ductus arteriosus before birth remodels the pulmonary vasculature of the lamb. Pediatr. Res. 25, 251–257 (1989).

    CAS  PubMed  Google Scholar 

  18. Belik, J., Keeley, F. W., Baldwin, F. & Rabinovitch, M. Pulmonary hypertension and vascular remodeling in fetal sheep. Am. J. Physiol. 266, H2303–H2309 (1994).

    CAS  PubMed  Google Scholar 

  19. Spitzer, A. R., Davis, J., Clarke, W. T., Bernbaum, J. & Fox, W. W. Pulmonary hypertension and persistent fetal circulation in the newborn. Clin. Perinatol. 15, 389–413 (1988).

    CAS  PubMed  Google Scholar 

  20. Rana, U. et al. Amp-kinase dysfunction alters notch ligands to impair angiogenesis in neonatal pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 62, 719–731 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Afolayan, A. J. et al. Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 310, L40–L49 (2016).

    PubMed  Google Scholar 

  22. Potente, M. & Carmeliet, P. The link between angiogenesis and endothelial metabolism. Annu. Rev. Physiol. 79, 43–66 (2017).

    CAS  PubMed  Google Scholar 

  23. Tang, X., Luo, Y. X., Chen, H. Z. & Liu, D. P. Mitochondria, endothelial cell function, and vascular diseases. Front. Physiol. 5, 175 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Kandasamy, J., Olave, N., Ballinger, S. W. & Ambalavanan, N. Vascular endothelial mitochondrial function predicts death or pulmonary outcomes in preterm infants. Am. J. Respir. Crit. Care Med. 196, 1040–1049 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Omura, J. et al. Protective roles of endothelial amp-activated protein kinase against hypoxia-induced pulmonary hypertension in mice. Circ. Res. 119, 197–209 (2016).

    CAS  PubMed  Google Scholar 

  26. Canto, C. & Auwerx, J. Pgc-1alpha, Sirt1 and Ampk, an energy sensing network that controls energy expenditure. Curr. Opin. Lipido. 20, 98–105 (2009).

    CAS  Google Scholar 

  27. Jager, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. Amp-activated protein kinase (Ampk) action in skeletal muscle via direct phosphorylation of Pgc-1alpha. Proc. Natl. Acad. Sci. USA 104, 12017–12022 (2007).

    PubMed  PubMed Central  Google Scholar 

  28. Fernandez-Marcos, P. J. & Auwerx, J. Regulation of Pgc-1alpha, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. 93, 884S–890S (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Valle, I., Alvarez-Barrientos, A., Arza, E., Lamas, S. & Monsalve, M. Pgc-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res. 66, 562–573 (2005).

    CAS  PubMed  Google Scholar 

  30. Sharma, M. et al. Decreased cyclic guanosine monophosphate-protein kinase G signaling impairs angiogenesis in a lamb model of persistent pulmonary hypertension of the newborn. Am. J. Respir. Cell Mol. Biol. 65, 555–567 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rius-Perez, S., Torres-Cuevas, I., Millan, I., Ortega, A. L. & Perez, S. Pgc-1alpha, inflammation, and oxidative stress: an integrative view in metabolism. Oxid. Med. Cell Longev. 2020, 1452696 (2020).

    PubMed  PubMed Central  Google Scholar 

  32. Chinsomboon, J. et al. The transcriptional coactivator Pgc-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc. Natl. Acad. Sci. USA 106, 21401–21406 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou, Y., Wang, S., Li, Y., Yu, S. & Zhao, Y. Sirt1/Pgc-1alpha signaling promotes mitochondrial functional recovery and reduces apoptosis after intracerebral hemorrhage in rats. Front. Mol. Neurosci. 10, 443 (2017).

    PubMed  Google Scholar 

  34. Teng, R. J., Eis, A., Bakhutashvili, I., Arul, N. & Konduri, G. G. Increased superoxide production contributes to the impaired angiogenesis of fetal pulmonary arteries with in utero pulmonary hypertension. Am. J. Physiol. Lung Cell Mol. Physiol. 297, L184–L195 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Konduri, G. G., Ou, J., Shi, Y. & Pritchard, K. A. Jr Decreased association of Hsp90 impairs endothelial nitric oxide synthase in fetal lambs with persistent pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 285, H204–H211 (2003).

    CAS  PubMed  Google Scholar 

  36. Konduri, G. G., Bakhutashvili, I., Eis, A. & Pritchard, K. Jr. Oxidant stress from uncoupled nitric oxide synthase impairs vasodilation in fetal lambs with persistent pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 292, H1812–H1820 (2007).

    CAS  PubMed  Google Scholar 

  37. Morin, F. C. 3rd Ligating the ductus arteriosus before birth causes persistent pulmonary hypertension in the newborn lamb. Pediatr. Res. 25, 245–250 (1989).

    PubMed  Google Scholar 

  38. Poliseno, L. et al. Micrornas modulate the angiogenic properties of HUVEs. Blood 108, 3068–3071 (2006).

    CAS  PubMed  Google Scholar 

  39. Matsui, J., Wakabayashi, T., Asada, M., Yoshimatsu, K. & Okada, M. Stem cell factor/C-Kit signaling promotes the survival, migration, and capillary tube formation of human umbilical vein endothelial cells. J. Biol. Chem. 279, 18600–18607 (2004).

    CAS  PubMed  Google Scholar 

  40. Villanueva, M. E., Zaher, F. M., Svinarich, D. M. & Konduri, G. G. Decreased gene expression of endothelial nitric oxide synthase in newborns with persistent pulmonary hypertension. Pediatr. Res. 44, 338–343 (1998).

    CAS  PubMed  Google Scholar 

  41. Austin, S. & St-Pierre, J. Pgc1alpha and mitochondrial metabolism-emerging concepts and relevance in ageing and neurodegenerative disorders. J. Cell Sci. 125, 4963–4971 (2012).

    CAS  PubMed  Google Scholar 

  42. Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator Pgc-1. Cell 98, 115–124 (1999).

    CAS  PubMed  Google Scholar 

  43. Patti, M. E. et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of Pgc1 and Nrf1. Proc. Natl. Acad. Sci. USA 100, 8466–8471 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, X. et al. The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the Ampk-Sirt1-Pgc-1alpha signalling pathway. Adipocyte 9, 484–494 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Saint-Geniez, M. et al. Pgc-1alpha regulates normal and pathological angiogenesis in the retina. Am. J. Pathol. 182, 255–265 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sawada, N. et al. Endothelial Pgc-1alpha mediates vascular dysfunction in diabetes. Cell Metab. 19, 246–258 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work of G.G.K. was supported by 1R01HL 136597-01 grant from U.S. National Heart, Lung, & Blood Institute (NHLBI); Children’s Research Institute Pilot Innovation Research Award for Muma Endowed Chair in Neonatology; and Advancing a Healthier Wisconsin Foundation Endowment.

Author information

Authors and Affiliations

Authors

Contributions

E.A.M.—had substantial contributions to conception and design; acquisition of data; analysis and interpretation of data; drafting the article and revising article critically for important intellectual content; and approving the version to be published. H.M.J.—had substantial contributions to acquisition of data. T.M.—had substantial contributions to acquisition of data as well as analysis and interpretation of data. U.R.—had substantial contributions to acquisition of data. C.J.—had substantial contributions to acquisition of data as well as analysis and interpretation of data. A.J.A.—had substantial contributions to conception and design as well as analysis and interpretation of data. R.-J.T.—had substantial contributions to conception and design as well as analysis and interpretation of data. G.G.K.—had substantial contributions to conception and design; analysis and interpretation of data; revising articles critically for important intellectual content; and approving the final version to be published.

Corresponding author

Correspondence to Emily A. Mooers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mooers, E.A., Johnson, H.M., Michalkiewicz, T. et al. Aberrant PGC-1α signaling in a lamb model of persistent pulmonary hypertension of the newborn. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03223-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03223-2

Search

Quick links