NASA — What We Learned from Flying a Helicopter on Mars

1.5M ratings
277k ratings

See, that’s what the app is perfect for.

Sounds perfect Wahhhh, I don’t wanna
A color GIF looking down at the Ingenuity Mars Helicopter as it begins to spin its two counter-rotating blades. The small craft sits on red, rocky Martian terrain. There is red dust on the helicopter’s solar panel. Credit: NASA/JPL-Caltech/ASUALT

What We Learned from Flying a Helicopter on Mars

A color GIF of NASA's Ingenuity Mars Helicopter as it hovers slowly above the dusty, rocky Martian landscape. Credit: NASA/JPL-Caltech/ASU/MSSSALT

The Ingenuity Mars Helicopter made history – not only as the first aircraft to perform powered, controlled flight on another world – but also for exceeding expectations, pushing the limits, and setting the stage for future NASA aerial exploration of other worlds.

Built as a technology demonstration designed to perform up to five experimental test flights over 30 days, Ingenuity performed flight operations from the Martian surface for almost three years. The helicopter ended its mission on Jan. 25, 2024, after sustaining damage to its rotor blades during its 72nd flight.

So, what did we learn from this small but mighty helicopter?

We can fly rotorcraft in the thin atmosphere of other planets.

Ingenuity proved that powered, controlled flight is possible on other worlds when it took to the Martian skies for the first time on April 19, 2021.

Flying on planets like Mars is no easy feat: The Red Planet has a significantly lower gravity – one-third that of Earth’s – and an extremely thin atmosphere, with only 1% the pressure at the surface compared to our planet. This means there are relatively few air molecules with which Ingenuity’s two 4-foot-wide (1.2-meter-wide) rotor blades can interact to achieve flight.

Ingenuity performed several flights dedicated to understanding key aerodynamic effects and how they interact with the structure and control system of the helicopter, providing us with a treasure-trove of data on how aircraft fly in the Martian atmosphere.

Now, we can use this knowledge to directly improve performance and reduce risk on future planetary aerial vehicles.

NASA’s Ingenuity Mars Helicopter took this black-and-white photo while hovering over the Martian surface on April 19, 2021, during the first instance of powered, controlled flight on another planet. It used its navigation camera, which is mounted in its fuselage and pointed directly downward to track the ground during flight. The image shows the shadow of the Ingenuity Mars Helicopter on the surface of Mars. The black shadow of the helicopter is very crisp and clear against the white backdrop of the Martian sandy surface. Its wing-shaped rotors jut out from the sides of its square body, and from each corner is a thin leg that has a small ball shape at the end. Credit: NASA/JPL-CaltechALT

Creative solutions and “ingenuity” kept the helicopter flying longer than expected.

Over an extended mission that lasted for almost 1,000 Martian days (more than 33 times longer than originally planned), Ingenuity was upgraded with the ability to autonomously choose landing sites in treacherous terrain, dealt with a dead sensor, dusted itself off after dust storms, operated from 48 different airfields, performed three emergency landings, and survived a frigid Martian winter.

Fun fact: To keep costs low, the helicopter contained many off-the-shelf-commercial parts from the smartphone industry - parts that had never been tested in deep space. Those parts also surpassed expectations, proving durable throughout Ingenuity’s extended mission, and can inform future budget-conscious hardware solutions.

A split screen image. The left side of the image shows a close-up photo of an Ingenuity team member inspecting NASA's Ingenuity Mars Helicopter while it was still here on Earth. Across the image are bold white letters that spell out "DREAM." The right side of the image shows a close-up photo of Ingenuity after it landed on Mars. The helicopter sits on the dusty, rocky surface of the planet. Across the image are bold white letters that spell out "REALITY." Credit:NASA/JPL-CaltechALT

There is value in adding an aerial dimension to interplanetary surface missions.

Ingenuity traveled to Mars on the belly of the Perseverance rover, which served as the communications relay for Ingenuity and, therefore, was its constant companion. The helicopter also proved itself a helpful scout to the rover.

After its initial five flights in 2021, Ingenuity transitioned to an “operations demonstration,” serving as Perseverance’s eyes in the sky as it scouted science targets, potential rover routes, and inaccessible features, while also capturing stereo images for digital elevation maps.

Airborne assets like Ingenuity unlock a new dimension of exploration on Mars that we did not yet have – providing more pixels per meter of resolution for imaging than an orbiter and exploring locations a rover cannot reach.

A color-animated image sequence of NASA’s Mars Perseverance rover shows the vehicle on Mars's red, dusty surface. The six-wheeled rover’s camera “head” faces the viewer and then turns to the left, where, on the ground, sits the small Ingenuity Mars Helicopter. Credit: NASA/JPL-Caltech/MSSSALT

Tech demos can pay off big time.

Ingenuity was flown as a technology demonstration payload on the Mars 2020 mission, and was a high risk, high reward, low-cost endeavor that paid off big. The data collected by the helicopter will be analyzed for years to come and will benefit future Mars and other planetary missions.

Just as the Sojourner rover led to the MER-class (Spirit and Opportunity) rovers, and the MSL-class (Curiosity and Perseverance) rovers, the team believes Ingenuity’s success will lead to future fleets of aircraft at Mars.

In general, NASA’s Technology Demonstration Missions test and advance new technologies, and then transition those capabilities to NASA missions, industry, and other government agencies. Chosen technologies are thoroughly ground- and flight-tested in relevant operating environments — reducing risks to future flight missions, gaining operational heritage and continuing NASA’s long history as a technological leader.

You can fall in love with robots on another planet.

Following in the tracks of beloved Martian rovers, the Ingenuity Mars Helicopter built up a worldwide fanbase. The Ingenuity team and public awaited every single flight with anticipation, awe, humor, and hope.

Check out #ThanksIngenuity on social media to see what’s been said about the helicopter’s accomplishments.

Learn more about Ingenuity’s accomplishments here. And make sure to follow us on Tumblr for your regular dose of space!

tech technology futurism space robotics inspiration science planets NASA aviation Youtube

See more posts like this on Tumblr

#tech #technology #robotics #futurism #space #inspiration #science #planets #NASA #aviation #Youtube