Skip to main content

Abiotic Recombination

  • Reference work entry
  • First Online:
Encyclopedia of Astrobiology
  • 81 Accesses

Synonyms

Non-enzymatic rearrangement; Primitive RNA catalysis; Self-catalytic activity

Definition

The RNA world hypothesis (Gilbert 1986) states that systems based on an RNA genome and RNA catalysts preceded current forms of life and several model systems have been described for auto-replication (Cech 1986; Meyer et al. 2012) and metabolism (Nissen et al. 2000). According to this model, long catalytically active RNA molecules (ribozymes) had to evolve from short RNA fragments through the reactions of cleavage and/or intermolecular ligation (named collectively “recombination”). Both reactions involve transesterification, which implies the involvement of 2’-OH group of ribose in the cleavage site for the ester bond transfer. This is the main reason for most likely participation of RNA rather than DNA in evolution under prebiotic conditions.

History (Optional)

RNA nonenzymatic recombination reactions are of great interest within the hypothesis of the “RNA world” (Gilbert 1986) which...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 1,799.99
Price excludes VAT (USA)
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cech TR (1986) A model for the RNA-catalyzed replication of RNA. Proc Natl Acad Sci U S A 83(12):4360–4363

    Article  ADS  Google Scholar 

  • Chen X, Li N, Ellington AD (2007) Ribozyme catalysis of metabolism in the RNA world. Chem Biodivers 4(4):633–655

    Article  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  ADS  Google Scholar 

  • Gilbert W (1986) Origin of life: the RNA world. Nature 319:618

    Article  ADS  Google Scholar 

  • Hayden EJ, Riley CA, Burton AS, Lehman N (2005) RNA-directed construction of structurally complex and active ligase ribozymes through recombination. RNA 11:1678–1687

    Article  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31(1):147–157

    Article  Google Scholar 

  • Lohrmann R, Bridson PK, Orgel LE (1980) Efficient metal-ion catalyzed template-directed oligonucleotide synthesis. Science 208:1464–1465

    Article  ADS  Google Scholar 

  • Meyer AJ, Ellefson JW, Ellington AD (2012) Abiotic self-replication. Acc Chem Res 45(12):2097–2105

    Article  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289(5481):920–930

    Article  ADS  Google Scholar 

  • Pino S, Ciciriello F, Costanzo G, Di Mauro E (2008) Nonenzymatic RNA ligation in water. J Biol Chem 283(52):36494–36503

    Article  Google Scholar 

  • Pino S, Biasiucci M, Scardamaglia M, Gigli G, Betti MG, Mariani C, Di Mauro E (2011a) Nonenzymatic ligation of an RNA oligonucleotide analyzed by atomic force microscopy. J Phys Chem B 115(19):6296–6303

    Article  Google Scholar 

  • Pino S, Costanzo G, Giorgi A, Di Mauro E (2011b) Sequence complementarity-driven nonenzymatic ligation of RNA. Biochemistry 50(14):2994–3003

    Article  Google Scholar 

  • Pino S, Costanzo G, Giorgi A, Šponer J, Šponer JE, Di Mauro E (2013) Ribozyme activity of RNA nonenzymatically polymerized from 3′,5′-cyclic GMP. Entropy 15:5362–5383

    Article  ADS  Google Scholar 

  • Riley CA, Lehman N (2003) Generalized RNA-directed recombination of RNA. Chem Biol 10(12):1233–1243

    Article  Google Scholar 

  • Smail BA, Clifton BE, Mizuuchi R, Lehman N (2019) Spontaneous advent of genetic diversity in RNA populations through multiple recombination mechanisms. RNA 25(4):453–464

    Article  Google Scholar 

  • Šponer JE, Šponer J, Novfflkovffl O, Brabec V, Sedo O, Zdrfflhal Z, Costanzo G, Pino S, Saladino R, Di Mauro E (2016) Emergence of the first catalytic oligonucleotides in a Formamide-based origin scenario. Chemistry 22(11):3572–3586

    Article  Google Scholar 

  • Staroseletz Y, Nechaev S, Bichenkova E, Bryce RA, Watson C, Vlassov V, Zenkova M (2018) Non-enzymatic recombination of RNA: ligation in loops. Biochim Biophys Acta Gen Subj 1862(3):705–725

    Article  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  ADS  Google Scholar 

  • Yadav M, Kumar R, Krishnamurthy R (2020) Chemistry of abiotic nucleotide synthesis. Chem Rev 120(11):4766–4805

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Costanzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Costanzo, G. (2023). Abiotic Recombination. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65093-6_5452

Download citation

Publish with us

Policies and ethics