Skip to main content

Applications of Molecular Dynamics Simulations in Drug Discovery

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2714))

Abstract

In the current drug development process, molecular dynamics (MD) simulations have proven to be very useful. This chapter provides an overview of the current applications of MD simulations in drug discovery, from detecting protein druggable sites and validating drug docking outcomes to exploring protein conformations and investigating the influence of mutations on its structure and functions. In addition, this chapter emphasizes various strategies to improve the conformational sampling efficiency in molecular dynamics simulations. With a growing computer power and developments in the production of force fields and MD techniques, the importance of MD simulations in helping the drug development process is projected to rise significantly in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 139.00
Price excludes VAT (USA)
Hardcover Book
USD 179.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin X (2022) Chapter 27 Applications of molecular dynamics simulations in drug discovery. In: Tripathi T, Dubey VK (eds) Advances in protein molecular and structural biology methods. Academic Press, pp 455–465. https://www.sciencedirect.com/science/article/pii/B9780323902649000271

    Chapter  Google Scholar 

  2. Vakhrushev AV (2018) Introductory chapter: molecular dynamics: basic tool of nanotechnology simulations for “Production 4.0” revolution. In: Vakhrushev A (ed) Molecular dynamics. IntechOpen, Rijeka, p Ch. 1. https://doi.org/10.5772/intechopen.79045

    Chapter  Google Scholar 

  3. Salo-Ahen OMH, Alanko I, Bhadane R et al (2021) Molecular dynamics simulations in drug discovery and pharmaceutical development. PRO 9(1):71. https://doi.org/10.3390/pr9010071

    Article  CAS  Google Scholar 

  4. Hasan MR, Alsaiari AA, Fakhurji BZ, Molla MHR, Asseri AH, Sumon MAA, Park MN, Ahammad F, Kim B (2022) Application of mathematical modeling and computational tools in the modern drug design and development process. Molecules 27:4169. https://doi.org/10.3390/molecules27134169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (1979) How fast-folding proteins fold. Science 334(6055):517–520. https://doi.org/10.1126/science.1208351

    Article  CAS  Google Scholar 

  6. Liou SH, Myers WK, Oswald JD, Britt RD, Goodin DB (2017) Putidaredoxin binds to the same site on cytochrome P450cam in the open and closed conformation. Biochemistry 56(33):4371–4378. https://doi.org/10.1021/acs.biochem.7b00564

    Article  CAS  PubMed  Google Scholar 

  7. Lindorff-Larsen K, Maragakis P, Piana S, Eastwood MP, Dror RO, Shaw DE (2012) Systematic validation of protein force fields against experimental data. PLoS One 7(2):e32131. https://doi.org/10.1371/journal.pone.0032131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salvatella X (2014) Understanding protein dynamics using conformational ensembles. In: Li HK, Zhang X, Jun YM (eds) Protein conformational dynamics [Internet]. Springer International Publishing, Cham, pp 67–85. https://doi.org/10.1007/978-3-319-02970-2_3

    Chapter  Google Scholar 

  9. Orellana L (2019) Large-scale conformational changes and protein function: breaking the in silico barrier. Front Mol Biosci 6. https://www.frontiersin.org/articles/10.3389/fmolb.2019.00117

  10. Allison JR (2020) Computational methods for exploring protein conformations. Biochem Soc Trans 48(4):1707–1724. https://doi.org/10.1042/BST20200193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma J, Sigler PB, Xu Z, Karplus M (2000) A dynamic model for the allosteric mechanism of GroEL11Edited by A. Fersht J Mol Biol 302(2):303–313. https://www.sciencedirect.com/science/article/pii/S0022283600940142

    Article  CAS  Google Scholar 

  12. Li J, Shaikh SA, Enkavi G, Wen PC, Huang Z, Tajkhorshid E (2013) Transient formation of water-conducting states in membrane transporters. PNAS 110(19):7696–7701. https://doi.org/10.1073/pnas.1218986110

    Article  PubMed  PubMed Central  Google Scholar 

  13. Orellana L, Yoluk O, Carrillo O, Orozco M, Lindahl E (2016) Prediction and validation of protein intermediate states from structurally rich ensembles and coarse-grained simulations. Nat Commun 7(1):12575. https://doi.org/10.1038/ncomms12575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT (2022) Two decades of Martini: better beads, broader scope. WIREs Comput Mol Sci 13(1):e1620. https://doi.org/10.1002/wcms.1620

    Article  Google Scholar 

  15. Zerze GH, Zheng W, Best RB, Mittal J (2019) Evolution of all-atom protein force fields to improve local and global properties. J Phys Chem Lett 10(9):2227–2234. https://doi.org/10.1021/acs.jpclett.9b00850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hopkins CW, le Grand S, Walker RC, Roitberg AE (2015) Long-time-step molecular dynamics through hydrogen mass repartitioning. J Chem Theory Comput 11(4):1864–1874. https://doi.org/10.1021/ct5010406

    Article  CAS  PubMed  Google Scholar 

  17. Pawnikar S, Bhattarai A, Wang J, Miao Y (2022) Binding analysis using accelerated molecular dynamics simulations and future perspectives. Adv Appl Bioinform Chem 15:1–19. https://doi.org/10.2147/AABC.S247950

    Article  PubMed  PubMed Central  Google Scholar 

  18. Augen J (2002) The evolving role of information technology in the drug discovery process. Drug Discov Today 7(5):315–323. https://www.sciencedirect.com/science/article/pii/S1359644602021736

    Article  CAS  PubMed  Google Scholar 

  19. Barducci A, Bussi G, Parrinello M (2008) Well-tempered Metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100(2):20603. https://link.aps.org/doi/10.1103/PhysRevLett.100.020603

    Article  Google Scholar 

  20. Duan L, Guo X, Cong Y, Feng G, Li Y, Zhang JZH (2019) Accelerated molecular dynamics simulation for helical proteins folding in explicit water. Front Chem 7:540. https://www.frontiersin.org/articles/10.3389/fchem.2019.00540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fraccalvieri D, Pandini A, Stella F, Bonati L (2011) Conformational and functional analysis of molecular dynamics trajectories by Self-Organising Maps. BMC Bioinformatics 12(1):158. https://doi.org/10.1186/1471-2105-12-158

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mohd A, Mohammad T, Kumar V, Alajmi MF, Rehman MT, Hussain A et al (2019) Structural analysis and conformational dynamics of STN1 gene mutations involved in coat plus syndrome. Front Mol Biosci 6:41. https://www.frontiersin.org/articles/10.3389/fmolb.2019.00041

    Article  Google Scholar 

  23. Chan WKB, DasGupta D, Carlson HA, Traynor JR (2021) Mixed-solvent molecular dynamics simulation-based discovery of a putative allosteric site on regulator of G protein signaling 4. J Comput Chem 42(30):2170–2180. https://doi.org/10.1002/jcc.26747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tan YS, Reeks J, Brown CJ, Thean D, Ferrer Gago FJ, Yuen TY et al (2016) Benzene probes in molecular dynamics simulations reveal novel binding sites for ligand design. J Phys Chem Lett 7(17):3452–3457. https://doi.org/10.1021/acs.jpclett.6b01525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prakash P, Hancock JF, Gorfe AA (2015) Binding hotspots on K-ras: consensus ligand binding sites and other reactive regions from probe-based molecular dynamics analysis. Proteins: Structure, Function, and Bioinformatics 83(5):898–909. https://doi.org/10.1002/prot.24786

    Article  CAS  Google Scholar 

  26. Graham SE, Leja N, Carlson HA (2018) MixMD Probeview: robust binding site prediction from Cosolvent simulations. J Chem Inf Model 58(7):1426–1433. https://doi.org/10.1021/acs.jcim.8b00265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sayyed-Ahmad A, Gorfe AA (2017) Mixed-probe simulation and probe-derived surface topography map analysis for ligand binding site identification. J Chem Theory Comput 13(4):1851–1861. https://doi.org/10.1021/acs.jctc.7b00130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perez A, Morrone JA, Simmerling C, Dill KA (2016) Advances in free-energy-based simulations of protein folding and ligand binding. Curr Opin Struct Biol 36:25–31. https://www.sciencedirect.com/science/article/pii/S0959440X15001888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuntal BK, Aparoy P, Reddanna P (2010) EasyModeller: a graphical interface to MODELLER. BMC Res Notes 3(1):226. https://doi.org/10.1186/1756-0500-3-226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leman JK, Weitzner BD, Lewis SM, Adolf-Bryfogle J, Alam N, Alford RF et al (2020) Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat Methods 17(7):665–680. https://doi.org/10.1038/s41592-020-0848-2

    Article  CAS  PubMed  Google Scholar 

  31. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174. https://doi.org/10.1002/jcc.2003

    Article  CAS  PubMed  Google Scholar 

  34. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  35. Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings. J Chem Inf Model 61(8):3891–3898. https://doi.org/10.1021/acs.jcim.1c00203

    Article  CAS  PubMed  Google Scholar 

  36. Molecular Operating Environment (MOE) (2022) 2022.02 Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2022. Molecular Operating Environment (MOE), 202202 Chemical Computing Group ULC, 1010 Sherbooke St West, Suite #910, Montreal, QC, Canada, H3A 2R7

    Google Scholar 

  37. Wolf S, Lickert B, Bray S, Stock G (2020) Multisecond ligand dissociation dynamics from atomistic simulations. Nat Commun 11(1):2918. https://doi.org/10.1038/s41467-020-16655-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. Molecular modeling annual 7(8):306–317. https://doi.org/10.1007/s008940100045

    Article  Google Scholar 

  39. Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC et al (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 153(4):044130. https://doi.org/10.1063/5.0014475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kappel K, Miao Y, McCammon JA (2015) Accelerated molecular dynamics simulations of ligand binding to a muscarinic G-protein-coupled receptor. Q Rev Biophys 48(4):479–487. https://doi.org/10.1017/S0033583515000153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL et al (2015) Structural insights into μ-opioid receptor activation. Nature 524(7565):315–321. https://doi.org/10.1038/nature14886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wacker D, Stevens RC, Roth BL (2017) How ligands illuminate GPCR molecular pharmacology. Cell 170(3):414–427. https://www.sciencedirect.com/science/article/pii/S0092867417308164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G et al (2015) Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc 25;137(7):2695–2703. https://doi.org/10.1021/ja512751q

    Article  CAS  Google Scholar 

  44. Jin Y, Johannissen LO, Hay S (2021) Predicting new protein conformations from molecular dynamics simulation conformational landscapes and machine learning. Proteins 89(8):915–921. https://doi.org/10.1002/prot.26068

    Article  CAS  Google Scholar 

  45. Hall BA, Kaye SL, Pang A, Perera R, Biggin PC (2007) Characterization of protein conformational states by normal-mode frequencies. J Am Chem Soc 129(37):11394–11401. https://doi.org/10.1021/ja071797y

    Article  CAS  PubMed  Google Scholar 

  46. Gur M, Blackburn EA, Ning J, Narayan V, Ball KL, Walkinshaw MD et al (2018) Molecular dynamics simulations of site point mutations in the TPR domain of cyclophilin 40 identify conformational states with distinct dynamic and enzymatic properties. J Chem Phys 148(14):145101. https://doi.org/10.1063/1.5019457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ahmed M, Barakat K (2017) The too many faces of PD-L1: a comprehensive conformational analysis study. Biochemistry 56(40):5428–5439. https://doi.org/10.1021/acs.biochem.7b00655

    Article  CAS  PubMed  Google Scholar 

  48. Holyoake J, Sansom MSP (2007) Conformational change in an MFS protein: MD simulations of LacY. Structure 15(7):873–884. https://www.sciencedirect.com/science/article/pii/S0969212607002092

    Article  CAS  PubMed  Google Scholar 

  49. Ghattas MA, al Rawashdeh S, Atatreh N, Bryce RA (2020) How do small molecule aggregates inhibit enzyme activity? A molecular dynamics study. J Chem Inf Model 60(8):3901–3909. https://doi.org/10.1021/acs.jcim.0c00540

    Article  CAS  PubMed  Google Scholar 

  50. Amine K, Miri L, Naimi A, Saile R, Kharrim AEL, Mikou A et al (2015) Molecular dynamics approach in the comparison of wild-type and mutant Paraoxonase-1 Apoenzyme form. Bioinform Biol Insights 9:BBI.S25626. https://doi.org/10.4137/BBI.S25626

    Article  Google Scholar 

  51. Panchal NK, Bhale A, Verma VK, Beevi SS (2020) Computational and molecular dynamics simulation approach to analyze the impact of XPD gene mutation on protein stability and function. bioRxiv 2020.07.18.209841.: http://biorxiv.org/content/early/2020/07/18/2020.07.18.209841.abstract

  52. Hirano Y, Okimoto N, Fujita S, Taiji M (2021) Molecular dynamics study of conformational changes of Tankyrase 2 binding subsites upon ligand binding. ACS Omega 6(27):17609–17620. https://doi.org/10.1021/acsomega.1c02159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Audagnotto M, Czechtizky W, de Maria L, Käck H, Papoian G, Tornberg L et al (2022) Machine learning/molecular dynamic protein structure prediction approach to investigate the protein conformational ensemble. Sci Rep 12(1):10018. https://doi.org/10.1038/s41598-022-13714-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gedeon PC, Thomas JR, Madura JD (2015) Accelerated molecular dynamics and protein conformational change: a theoretical and practical guide using a membrane embedded model neurotransmitter transporter. In: Kukol A (ed) Molecular modeling of proteins. Springer New York, New York, pp 253–287. https://doi.org/10.1007/978-1-4939-1465-4_12

    Chapter  Google Scholar 

  55. Bhattarai A, Pawnikar S, Miao Y (2021) Mechanism of ligand recognition by human ACE2 receptor. J Phys Chem Lett 12(20):4814–4822. https://doi.org/10.1021/acs.jpclett.1c01064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Laio A, Gervasio FL (2008) Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 71(12):126601. https://doi.org/10.1088/0034-4885/71/12/126601

    Article  CAS  Google Scholar 

  57. Bešker N, Gervasio FL (2012) Using metadynamics and path collective variables to study ligand binding and induced conformational transitions. In: Baron R (ed) Computational drug discovery and design. Springer New York, New York, pp 501–513. https://doi.org/10.1007/978-1-61779-465-0_29

    Chapter  Google Scholar 

  58. Provasi D, Bortolato A, Filizola M (2009) Exploring molecular mechanisms of ligand recognition by opioid receptors with Metadynamics. Biochemistry 48(42):10020–10029. https://doi.org/10.1021/bi901494n

    Article  CAS  PubMed  Google Scholar 

  59. Casasnovas R, Limongelli V, Tiwary P, Carloni P, Parrinello M (2017) Unbinding kinetics of a p38 MAP kinase type II inhibitor from metadynamics simulations. J Am Chem Soc 139(13):4780–4788. https://doi.org/10.1021/jacs.6b12950

    Article  CAS  PubMed  Google Scholar 

  60. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J Comput Phys 23(2):187–199. https://www.sciencedirect.com/science/article/pii/0021999177901218

    Article  Google Scholar 

  61. Darve E, Rodríguez-Gómez D, Pohorille A (2008) Adaptive biasing force method for scalar and vector free energy calculations. J Chem Phys 128(14):144120. https://doi.org/10.1063/1.2829861

    Article  CAS  PubMed  Google Scholar 

  62. Kalyaanamoorthy S, Lamothe SM, Hou X, Moon TC, Kurata HT, Houghton M et al (2020) A structure-based computational workflow to predict liability and binding modes of small molecules to hERG. Sci Rep 10(1):16262. https://doi.org/10.1038/s41598-020-72889-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Souza PCT, Alessandri R, Barnoud J, Thallmair S, Faustino I, Grünewald F et al (2021) Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nat Methods 18(4):382–388. https://doi.org/10.1038/s41592-021-01098-3

    Article  CAS  PubMed  Google Scholar 

  64. Cellmer T, Fawzi NL (2012) Coarse-grained simulations of protein aggregation. In: Voynov V, Caravella JA (eds) Therapeutic proteins: methods and protocols [Internet]. Humana Press, Totowa, pp 453–470. https://doi.org/10.1007/978-1-61779-921-1_27

    Chapter  Google Scholar 

  65. Peroukidis SD, Stott IP, Mavrantzas VG (2022) Coarse-grained model incorporating short- and long-range effective potentials for the fast simulation of micelle formation in solutions of ionic surfactants. J Phys Chem B 126(29):5555–5569. https://doi.org/10.1021/acs.jpcb.2c02751

    Article  CAS  PubMed  Google Scholar 

  66. Frallicciardi J, Melcr J, Siginou P, Marrink SJ, Poolman B (2022) Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat Commun 13(1):1605. https://doi.org/10.1038/s41467-022-29272-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hoffmann C, Centi A, Menichetti R, Bereau T (2020) Molecular dynamics trajectories for 630 coarse-grained drug-membrane permeations. Sci Data 7(1):51. https://doi.org/10.1038/s41597-020-0391-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Patmanidis I, Souza PCT, Sami S, Havenith RWA, de Vries AH, Marrink SJ (2022) Modelling structural properties of cyanine dye nanotubes at coarse-grained level. Nanoscale Adv 4(14):3033–3042. https://doi.org/10.1039/D2NA00158F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled H. Barakat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

AlRawashdeh, S., Barakat, K.H. (2024). Applications of Molecular Dynamics Simulations in Drug Discovery. In: Gore, M., Jagtap, U.B. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 2714. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3441-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3441-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3440-0

  • Online ISBN: 978-1-0716-3441-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics