Skip to main content

Exploring the Role of Chemoinformatics in Accelerating Drug Discovery: A Computational Approach

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Abstract

Cheminformatics and its role in drug discovery is expected to be the privileged approach in handling large number of chemical datasets. This approach contributes toward the pharmaceutical development and assessment of chemical compounds at a faster rate efficiently. Additionally, as technological advancement impacts research, cheminformatics is being used more and more in the field of health science. This chapter describes the concepts of cheminformatics along with its involvement in drug discovery with a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 139.00
Price excludes VAT (USA)
Hardcover Book
USD 179.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gozalbes R, Pineda-Lucena A (2011) Small molecule databases and chemical descriptors useful in chemoinformatics: an overview. Comb Chem High Throughput Screen 14:548–458

    Article  CAS  PubMed  Google Scholar 

  2. Olsson T, Oprea TI (2001) Cheminformatics: a tool for decision-makers in drug discovery. Curr Opin Drug Discov Devel 4:308–313

    CAS  PubMed  Google Scholar 

  3. Ritchie TJ (2001) Chemoinformatics: manipulating chemical information to facilitate decision-making in drug discovery. Drug Discov Today 6:813–814

    Article  PubMed  Google Scholar 

  4. Wang G (2016) Chemoinformatics in the new era: from molecular dynamics to systems dynamics. Molecules 21:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bajorath J (2001) Rational drug discovery revisited: interfacing experimental programs with bio- and chemo-informatics. Drug Discov Today 6:989–995

    Article  CAS  PubMed  Google Scholar 

  6. Xu JHA (2002) Chemoinformatics and drug discovery. Molecules 7:34

    Article  Google Scholar 

  7. Varnek A, Baskin II (2011) Chemoinformatics as a theoretical chemistry discipline. Mol Inform 30:20–32

    Article  CAS  PubMed  Google Scholar 

  8. Lopez-Lopez E, Bajorath J, Medina-Franco JL (2021) Informatics for chemistry, biology, and biomedical sciences. J Chem Inf Model 61:26–35

    Article  CAS  PubMed  Google Scholar 

  9. Medina-Franco JL, Martínez-Mayorga K, Giulianotti MA, Houghten RA, Pinilla C (2008) Visualization of the chemical space in drug discovery. Curr Comput Aided Drug Design 4:322–333

    Article  CAS  Google Scholar 

  10. Panwar U, Chandra I, Selvaraj C, Singh SK (2019) Current computational approaches for the development of anti-HIV inhibitors: an overview. Curr Pharm Des 25:3390–3405

    Article  CAS  PubMed  Google Scholar 

  11. Selvaraj C, Panwar U, Dinesh DC, Boura E, Singh P, Dubey VK, Singh SK (2021) Microsecond MD simulation and multiple-conformation virtual screening to identify potential anti-COVID-19 inhibitors against SARS-CoV-2 main protease. Front Chem 8:595273

    Article  PubMed  PubMed Central  Google Scholar 

  12. Patidar K, Deshmukh A, Bandaru S, Lakkaraju C, Girdhar A, Gutlapalli VR, Banerjee T, Nayarisseri A, Singh SK (2016) Virtual screening approaches in identification of bioactive compounds Akin to delphinidin as potential HER2 inhibitors for the treatment of breast cancer. Asian Pac J Cancer Prev 17:2291–2295

    Article  PubMed  Google Scholar 

  13. Panwar U, Singh SK (2018) An overview on Zika virus and the importance of computational drug discovery. J Explor Res Pharmacol 3:43–51

    Article  Google Scholar 

  14. Sharda S, Sarmandal P, Cherukommu S, Dindhoria K, Yadav M, Bandaru S, Sharma A, Sakhi A, Vyas T, Hussain T, Nayarisseri A (2017) A virtual screening approach for the identification of high affinity small molecules targeting BCR-ABL1 inhibitors for the treatment of chronic myeloid leukemia. Curr Top Med Chem 17:2989–2996

    Article  CAS  PubMed  Google Scholar 

  15. Selvaraj C, Singh SK, Tripathi SK, Reddy KK, Rama M (2012) In silico screening of indinavir-based compounds targeting proteolytic activity in HIV PR: binding pocket fit approach. Med Chem Res 21:4060–4068

    Article  CAS  Google Scholar 

  16. Ivanciuc O (2013) Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships. Curr Comput Aided Drug Des 9:153–163

    Article  CAS  PubMed  Google Scholar 

  17. Salo-Ahen OM, Alanko I, Bhadane R, Bonvin AM, Honorato RV, Hossain S, Juffer AH, Kabedev A, Lahtela-Kakkonen M, Larsen AS, Lescrinier E (2020) Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 9:71

    Article  Google Scholar 

  18. Raymond JW, Willett P (2002) Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases. J Comput Aided Mol Des 16:59–71

    Article  CAS  PubMed  Google Scholar 

  19. Sheridan RP, Kearsley SK (2002) Why do we need so many chemical similarity search methods? Drug Discov Today 7:903–911

    Article  PubMed  Google Scholar 

  20. Lo YC, Rensi SE, Torng W, Altman RB (2018) Machine learning in chemoinformatics and drug discovery. Drug Discov Today 23:1538–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reddy KK, Singh SK, Tripathi SK, Selvaraj C, Suryanarayanan V (2013) Shape and pharmacophore-based virtual screening to identify potential cytochrome P450 sterol 14α-demethylase inhibitors. J Recept Signal Transduct Res 33:234–243

    Article  CAS  PubMed  Google Scholar 

  22. Reddy KK, Singh SK, Dessalew N, Tripathi SK, Selvaraj C (2012) Pharmacophore modelling and atom-based 3D-QSAR studies on N-methyl pyrimidones as HIV-1 integrase inhibitors. J Enzyme Inhib Med Chem 27:339–347

    Article  CAS  PubMed  Google Scholar 

  23. Reddy KK, Singh SK, Tripathi SK, Selvaraj C (2013) Identification of potential HIV-1 integrase strand transfer inhibitors: in silico virtual screening and QM/MM docking studies. SAR QSAR Environ Res 24:581–595

    Article  CAS  PubMed  Google Scholar 

  24. Panwar U, Singh SK (2021) Atom-based 3D-QSAR, molecular docking, DFT, and simulation studies of acylhydrazone, hydrazine, and diazene derivatives as IN-LEDGF/p75 inhibitors. Struct Chem 32:337–352

    Article  CAS  Google Scholar 

  25. Ertl P, Muhlbacher J, Rohde B, Selzer P (2003) Web-based cheminformatics and molecular property prediction tools supporting drug design and development at Novartis. SAR QSAR Environ Res 14:321–328

    Article  CAS  PubMed  Google Scholar 

  26. Cox PB, Gupta R (2022) Contemporary computational applications and tools in drug discovery. ACS Med Chem Lett 13:1016–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43:1947–1958

    Article  CAS  PubMed  Google Scholar 

  28. Ekins S, Reynolds RC, Kim H, Koo MS, Ekonomidis M, Talaue M, Paget SD, Woolhiser LK, Lenaerts AJ, Bunin BA, Connell N (2013) Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery. Chem Biol 20:370–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Varnek A, Baskin I (2012) Machine learning methods for property prediction in chemoinformatics: Quo Vadis? J Chem Inf Model 52:1413–1437

    Article  CAS  PubMed  Google Scholar 

  30. Maiti P, Sharma P, Nand M, Bhatt ID, Ramakrishnan MA, Mathpal S, Joshi T, Pant R, Mahmud S, Simal-Gandara J, Alshehri S (2022) Integrated machine learning and chemoinformatics-based screening of mycotic compounds against kinesin spindle proteinEg5 for lung cancer therapy. Molecules 27:1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aarthy M, Kumar D, Giri R, Singh SK (2018) E7 oncoprotein of human papillomavirus: structural dynamics and inhibitor screening study. Gene 658:159–177

    Article  CAS  PubMed  Google Scholar 

  32. Aarthy M, Panwar U, Singh SK (2020) Structural dynamic studies on identification of EGCG analogues for the inhibition of Human Papillomavirus E7. Sci Rep 10:8661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Selvaraj C, Panwar U, Ramalingam KR, Vijayakumar R, Singh SK (2022) Exploring the macromolecules for secretory pathway in cancer disease. Adv Protein Chem Struct Biol 133:55–83

    Article  PubMed  Google Scholar 

  34. Issa NT, Stathias V, Schurer S, Dakshanamurthy S (2021) Machine and deep learning approaches for cancer drug repurposing. Semin Cancer Biol 68:132–142

    Article  CAS  PubMed  Google Scholar 

  35. Aarthy M, Panwar U, Singh SK (2021) Magnitude and advancements of CADD in identifying therapeutic intervention against Flaviviruses. In: Innovations and implementations of computer aided drug discovery strategies in rational drug design. Springer, Singapore, pp 179–203

    Chapter  Google Scholar 

  36. Bhrdwaj A, Abdalla M, Pande A, Madhavi M, Chopra I, Soni L, Vijayakumar N, Panwar U, Khan M, Prajapati L, Gujrati D (2023) Structure-based virtual screening, molecular docking, molecular dynamics simulation of EGFR for the clinical treatment of glioblastoma. Appl Biochem Biotechnol 28:1–26

    Google Scholar 

  37. Chopra I, Panwar U, Bhrdwaj A, Madhavi M, Soni L, Sharma K, Parihar AS, Mohan VP, Prajapati L, Joshi I, Sharma R (2023) Structural insights into conformational stability of ESR1 and structure base screening of new potent inhibitor for the treatment of Breast Cancer. https://doi.org/10.21203/rs.3.rs-1413803/v1

  38. Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, Magariños MP, Mosquera JF, Mutowo P, Nowotka M, Gordillo-Marañón M (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res 47:930–940

    Article  Google Scholar 

  39. Vivek-Ananth RP, Sahoo AK, Kumaravel K, Mohanraj K, Samal A (2021) MeFSAT: a curated natural product database specific to secondary metabolites of medicinal fungi. RSC Adv 11:2596–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Duffy BC, Zhu L, Decornez H, Kitchen DB (2012) Early phase drug discovery: cheminformatics and computational techniques in identifying lead series. Bioorg Med Chem 20:5324–5342

    Article  CAS  PubMed  Google Scholar 

  41. KalantarMotamedi Y, Ejeian F, Sabouhi F, Bahmani L, Nejati AS, Bhagwat AM, Ahadi AM, Tafreshi AP, Nasr-Esfahani MH, Bender A (2021) Transcriptional drug repositioning and cheminformatics approach for differentiation therapy of leukaemia cells. Sci Rep 11:12537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Davis AP, Murphy CG, Johnson R, Lay JM, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D, King BL, Rosenstein MC, Wiegers TC, Mattingly CJ (2013) The comparative toxicogenomics database: update 2013. Nucleic Acids Res 41:1104–1114

    Article  Google Scholar 

  43. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:1100–1107

    Article  Google Scholar 

  44. Speck-Planche A, Scotti MT (2019) BET bromodomain inhibitors: fragment-based in silico design using multi-target QSAR models. Mol Divers 23:555–572

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, Yan J, Wang H, Wang Y, Wang J, Zhao D (2021) Molecular docking, 3D-QSAR, and molecular dynamics simulations of thieno[3,2-b]pyrrole derivatives against anticancer targets of KDM1A/LSD1. J Biomol Struct Dyn 39:1189–1202

    Article  CAS  PubMed  Google Scholar 

  46. Iqbal J, Vogt M, Bajorath J (2020) Activity landscape image analysis using convolutional neural networks. J Cheminform 12:34

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hu H, Stumpfe D, Bajorath J (2019) Systematic identification of target set-dependent activity cliffs. Future Sci OA 5:FSO363

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sessions Z, Sánchez-Cruz N, Prieto-Martínez FD, Alves VM, Santos HP Jr, Muratov E, Tropsha A, Medina-Franco JL (2020) Recent progress on cheminformatics approaches to epigenetic drug discovery. Drug Discov Today 25:2268–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liang J, Zheng Y, Tong X, Yang N, Dai S (2023) In silico identification of anti-SARS-CoV-2 medicinal plants using cheminformatics and machine learning. Molecules 28:208

    Article  CAS  Google Scholar 

  50. James T (2018) Cheminformatics in the service of GPCR drug discovery. Methods Mol Biol 1705:395–411

    Article  CAS  PubMed  Google Scholar 

  51. Medina-Franco JL, Saldívar-González FI (2020) Cheminformatics to characterize pharmacologically active natural products. Biomol Ther 10:1566

    CAS  Google Scholar 

  52. Moschovou K, Melagraki G, Mavromoustakos T, Zacharia LC, Afantitis A (2020) Cheminformatics and virtual screening studies of COMT inhibitors as potential Parkinson’s disease therapeutics. Expert Opin Drug Discov 15:53–62

    Article  CAS  PubMed  Google Scholar 

  53. Ban F, Dalal K, LeBlanc E, Morin H, Rennie PS, Cherkasov A (2018) Cheminformatics driven development of novel therapies for drug resistant prostate cancer. Mol Inform 37:1800043

    Article  Google Scholar 

  54. Avram S, Udrea AM, Negrea A, Ciopec M, Duteanu N, Postolache C, Duda-Seiman C, Duda-Seiman D, Shaposhnikov S (2019) Prevention of deficit in neuropsychiatric disorders through monitoring of arsenic and its derivatives as well as through bioinformatics and cheminformatics. Int J Mol Sci 20:1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sukumar N, Krein MP, Embrechts MJ (2012) Predictive cheminformatics in drug discovery: statistical modeling for analysis of micro-array and gene expression data. Bioinfo Drug Discov 190:165–194

    Google Scholar 

  56. Khan SA, Khan A, Zia K, Shawish I, Barakat A, Ul-Haq Z (2022) Cheminformatics-based discovery of potential chemical probe inhibitors of omicron spike protein. Int J Mol Sci 23:10315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Carracedo-Reboredo P, Liñares-Blanco J, Rodríguez-Fernández N, Cedrón F, Novoa FJ, Carballal A, Maojo V, Pazos A, Fernandez-Lozano C (2021) A review on machine learning approaches and trends in drug discovery. Comput Struct Biotechnol J 19:4538–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sadybekov AV, Katritch V (2023) Computational approaches streamlining drug discovery. Nature 616:673–685

    Article  CAS  PubMed  Google Scholar 

  59. Bhattacharjee H, Burns J, Vlachos DG (2023) AIMSim: an accessible cheminformatics platform for similarity operations on chemicals datasets. Comput Phys Commun 283:108579

    Article  CAS  Google Scholar 

  60. Galindez G, Sadegh S, Baumbach J, Kacprowski T, Listc M (2023) Network-based approaches for modeling disease regulation and progression. Comput Struct Biotechnol J 21:780–795

    Article  CAS  PubMed  Google Scholar 

  61. Sil A, Bespalov A, Dalla C, Ferland-Beckham C, Herremans A, Karantzalos K, Kas MJ, Kokras N, Parnham MJ, Pavlidi P, Pristouris K (2021) PEERS—an open science “platform for the exchange of experimental research standards” in biomedicine. Front Behav Neurosci 15:755812

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lavecchia A (2019) Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov Today 24:2017–2032

    Article  PubMed  Google Scholar 

  63. Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo drug design. Sci Adv 4:7885

    Article  Google Scholar 

  64. Hu W, Liu Y, Chen X, Chai W, Chen H, Wang H, Wang G (2023) Deep learning methods for small molecule drug discovery: a survey. IEEE Trans Artif Intell 1:1

    Google Scholar 

  65. Nayarisseri A, Khandelwal R, Madhavi M, Selvaraj C, Panwar U, Sharma K, Hussain T, Singh SK (2020) Shape-based machine learning models for the potential novel COVID-19 protease inhibitors assisted by molecular dynamics simulation. Curr Top Med Chem 20:2146–2167

    Google Scholar 

  66. Selvaraj C, Omer A, Singh P, Singh SK (2015) Molecular insights of protein contour recognition with ligand pharmacophoric sites through combinatorial library design and MD simulation in validating HTLV-1 PR inhibitors. Mol Biosyst 11:178–189

    Google Scholar 

  67. Tripathi SK, Selvaraj C, Singh SK, Reddy KK (2012) Molecular docking, QPLD, and ADME prediction studies on HIV-1 integrase leads. Med Chem Res 21:4239–4251

    Google Scholar 

  68. Ranganathan S, Ilavarasi AV, Palaka BK, Kuppusamy D, Ampasala DR (2022) Cloning, functional characterization and screening of potential inhibitors for Chilo partellus chitin synthase A using in silico, in vitro and in vivo approaches. J Biomol Struct 40:1416–1429

    Google Scholar 

  69. Reddy KK, Singh SK (2014) Combined ligand and structure-based approaches on HIV-1 integrase strand transfer inhibitors. Chem Biol Interact 218:71–81

    Google Scholar 

  70. Majhi M, Ali MA, Limaye A, Sinha K, Bairagi P, Chouksey M, Shukla R, Kanwar N, Hussain T, Nayarisseri A, Singh SK (2018) An in-silico investigation of potential EGFR inhibitors for the clinical treatment of colorectal cancer. Curr Top Med Chem 18:2355–2366

    Google Scholar 

  71. Ranganathan S, Ampasala DR, Palaka BK, Ilavarasi AV, Patidar I, Poovadan LP, Sapam TD (2021) In silico binding profile analysis and in vitro investigation on chitin synthase substrate and inhibitors from maize stem borer, Chilo partellus. Curr Comput Aided Drug Des 17:881–895

    Google Scholar 

  72. Reddy KK, Singh P, Singh SK (2014) Blocking the interaction between HIV-1 integrase and human LEDGF/p75: mutational studies, virtual screening, and molecular dynamics simulations. Mol Biosyst 10:526–536

    Google Scholar 

Download references

Acknowledgments

AM, UP and SKS thankfully acknowledge the DST-PURSE 2nd Phase Programme grant [No. SR/PURSE Phase 2/38 (G); DST-FIST Grant [(SR/FST/LSI—667/2016)]; MHRD RUSA-Phase 2.0 grant sanctioned vide Letter no. [F.24‐51/2014‐U, Policy (TN Multi‐Gen), Department of Education, Govt of India]; Tamil Nadu State Council for Higher Education (TANSCHE) under [No. AU: S.O. (P&D): TANSCHE Projects: 117/ 202, File No. RGP/2019‐20/ALU/ HECP‐0048]; DBT-BIC, New Delhi, under Grant/Award [No. BT/PR40154/BTIS/137/ 34/2021, dated 31.12.2021]; and DBT-NNP Project, New Delhi, under Grant/Award [No. BT/PR40156/BTIS/54/2023 dated 06.02.2023] for providing the research grant and infrastructure facilities in the lab.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Murali, A., Panwar, U., Singh, S.K. (2024). Exploring the Role of Chemoinformatics in Accelerating Drug Discovery: A Computational Approach. In: Gore, M., Jagtap, U.B. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 2714. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3441-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3441-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3440-0

  • Online ISBN: 978-1-0716-3441-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics