Skip to main content

Neuroinflammation in Huntington’s Disease

  • Protocol
  • First Online:
Neurodegenerative Diseases Biomarkers

Part of the book series: Neuromethods ((NM,volume 173))

Abstract

Huntington’s disease (HD) is a debilitating inherited neurodegenerative disorder characterized by motor, cognitive and psychiatric deficits. Microglial and astrocyte activation, part of the process termed neuroinflammation, is one hallmark of HD, and modulation of neuroinflammation has been suggested as a potential target for therapeutic intervention. Although the relationship between neuroinflammation markers and the disease pathology is not completely understood, there is now compelling evidence to suggest that microglial and astrocyte activation signatures, identified as soluble factors in the cerebrospinal fluid or blood, or identified using PET imaging, could be used as potential complementary biomarkers to monitor and evaluate disease progression in HD patients. Identification of neuroinflammation markers prior to clinical symptoms opens up the possibility of evaluating disease-modifying treatments in the premanifest phase. Hence, neuroinflammatory biofluid and imaging biomarkers could provide an objective measurement for assessing HD severity and would also be valuable in the clinical care of existing HD patients. Neuroinflammatory biomarkers would also be useful in a clinical trial context, potentially serving as surrogate endpoints. This chapter will explore the evidence of roles for activated microglia, astrocytes, and peripheral immune cells in HD, and explore possible biomarkers of neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 109.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 149.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306(5940):234–238. https://doi.org/10.1038/306234a0

    Article  CAS  PubMed  Google Scholar 

  2. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4(4):398–403. https://doi.org/10.1038/ng0893-398

    Article  CAS  PubMed  Google Scholar 

  3. Duyao M, Ambrose C, Myers R, Novelletto A, Persichetti F, Frontali M et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4(4):387–392. https://doi.org/10.1038/ng0893-387

    Article  CAS  PubMed  Google Scholar 

  4. Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P et al (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 4(4):393–397. https://doi.org/10.1038/ng0893-393

    Article  CAS  PubMed  Google Scholar 

  5. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10(1):83–98. https://doi.org/10.1016/S1474-4422(10)70245-3

    Article  CAS  PubMed  Google Scholar 

  6. Tourette C, Li B, Bell R, O’Hare S, Kaltenbach LS, Mooney SD et al (2014) A large scale Huntingtin protein interaction network implicates Rho GTPase signaling pathways in Huntington disease. J Biol Chem 289(10):6709–6726. https://doi.org/10.1074/jbc.M113.523696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yanai A, Huang K, Kang R, Singaraja RR, Arstikaitis P, Gan L et al (2006) Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci 9(6):824–831. https://doi.org/10.1038/nn1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6(12):919–930. https://doi.org/10.1038/nrn1806

    Article  CAS  PubMed  Google Scholar 

  9. Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR et al (2015) Huntington disease. Nat Rev Dis Primers 1:15005. https://doi.org/10.1038/nrdp.2015.5

    Article  PubMed  Google Scholar 

  10. Masnata M, Sciacca G, Maxan A, Bousset L, Denis HL, Lauruol F et al (2019) Demonstration of prion-like properties of mutant huntingtin fibrils in both in vitro and in vivo paradigms. Acta Neuropathol 137(6):981–1001. https://doi.org/10.1007/s00401-019-01973-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rub U, Vonsattel JP, Heinsen H, Korf HW (2015) The Neuropathology of Huntington’s disease: classical findings, recent developments and correlation to functional neuroanatomy. Adv Anat Embryol Cell Biol 217:1–146

    Article  PubMed  Google Scholar 

  12. Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RA, Durr A, Craufurd D et al (2009) Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol 8(9):791–801. https://doi.org/10.1016/S1474-4422(09)70170-X

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tabrizi SJ, Reilmann R, Roos RA, Durr A, Leavitt B, Owen G et al (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11(1):42–53. https://doi.org/10.1016/S1474-4422(11)70263-0

    Article  PubMed  Google Scholar 

  14. Tabrizi SJ, Scahill RI, Owen G, Durr A, Leavitt BR, Roos RA et al (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12(7):637–649. https://doi.org/10.1016/S1474-4422(13)70088-7

    Article  PubMed  Google Scholar 

  15. Carroll JB, Bates GP, Steffan J, Saft C, Tabrizi SJ (2015) Treating the whole body in Huntington’s disease. Lancet Neurol 14(11):1135–1142. https://doi.org/10.1016/S1474-4422(15)00177-5

    Article  PubMed  Google Scholar 

  16. van der Burg JM, Bjorkqvist M, Brundin P (2009) Beyond the brain: widespread pathology in Huntington’s disease. Lancet Neurol 8(8):765–774. https://doi.org/10.1016/S1474-4422(09)70178-4

    Article  PubMed  Google Scholar 

  17. Crotti A, Glass CK (2015) The choreography of neuroinflammation in Huntington’s disease. Trends Immunol 36(6):364–373. https://doi.org/10.1016/j.it.2015.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ellrichmann G, Reick C, Saft C, Linker RA (2013) The role of the immune system in Huntington’s disease. Clin Dev Immunol 2013:541259. https://doi.org/10.1155/2013/541259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kwan W, Magnusson A, Chou A, Adame A, Carson MJ, Kohsaka S et al (2012) Bone marrow transplantation confers modest benefits in mouse models of Huntington’s disease. J Neurosci 32(1):133–142. https://doi.org/10.1523/JNEUROSCI.4846-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Woodruff TM, Crane JW, Proctor LM, Buller KM, Shek AB, de Vos K et al (2006) Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration. FASEB J 20(9):1407–1417. https://doi.org/10.1096/fj.05-5814com

    Article  CAS  PubMed  Google Scholar 

  21. Yang HM, Yang S, Huang SS, Tang BS, Guo JF (2017) Microglial activation in the pathogenesis of Huntington’s disease. Front Aging Neurosci 9:193. https://doi.org/10.3389/fnagi.2017.00193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Silvestroni A, Faull RL, Strand AD, Moller T (2009) Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. Neuroreport 20(12):1098–1103. https://doi.org/10.1097/WNR.0b013e32832e34ee

    Article  PubMed  Google Scholar 

  23. Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J, Cabiscol E (2008) Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med 45(5):667–678. https://doi.org/10.1016/j.freeradbiomed.2008.05.014

    Article  CAS  PubMed  Google Scholar 

  24. Singhrao SK, Neal JW, Morgan BP, Gasque P (1999) Increased complement biosynthesis by microglia and complement activation on neurons in Huntington’s disease. Exp Neurol 159(2):362–376. https://doi.org/10.1006/exnr.1999.7170

    Article  CAS  PubMed  Google Scholar 

  25. Bouwens JA, van Duijn E, Cobbaert CM, Roos RA, van der Mast RC, Giltay EJ (2016) Plasma cytokine levels in relation to neuropsychiatric symptoms and cognitive dysfunction in Huntington’s disease. J Huntingtons Dis 5(4):369–377. https://doi.org/10.3233/JHD-160213

    Article  CAS  PubMed  Google Scholar 

  26. Bouwens JA, van Duijn E, Cobbaert CM, Roos RAC, van der Mast RC, Giltay EJ (2017) Disease stage and plasma levels of cytokines in Huntington’s disease: a 2-year follow-up study. Mov Disord 32(7):1103–1104. https://doi.org/10.1002/mds.26950

    Article  CAS  PubMed  Google Scholar 

  27. Chang KH, Wu YR, Chen YC, Chen CM (2015) Plasma inflammatory biomarkers for Huntington’s disease patients and mouse model. Brain Behav Immun 44:121–127. https://doi.org/10.1016/j.bbi.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  28. Chen CM, Wu YR, Cheng ML, Liu JL, Lee YM, Lee PW et al (2007) Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients. Biochem Biophys Res Commun 359(2):335–340. https://doi.org/10.1016/j.bbrc.2007.05.093

    Article  CAS  PubMed  Google Scholar 

  29. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA et al (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66(11):1638–1643. https://doi.org/10.1212/01.wnl.0000222734.56412.17

    Article  CAS  PubMed  Google Scholar 

  30. Politis M, Pavese N, Tai YF, Kiferle L, Mason SL, Brooks DJ et al (2011) Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: a multimodal imaging study. Hum Brain Mapp 32(2):258–270. https://doi.org/10.1002/hbm.21008

    Article  PubMed  Google Scholar 

  31. Rodrigues FB, Byrne LM, McColgan P, Robertson N, Tabrizi SJ, Zetterberg H et al (2016) Cerebrospinal fluid inflammatory biomarkers reflect clinical severity in Huntington’s disease. PLoS One 11(9):e0163479. https://doi.org/10.1371/journal.pone.0163479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trager U, Andre R, Lahiri N, Magnusson-Lind A, Weiss A, Grueninger S et al (2014) HTT-lowering reverses Huntington’s disease immune dysfunction caused by NFkappaB pathway dysregulation. Brain 137(Pt 3):819–833. https://doi.org/10.1093/brain/awt355

    Article  PubMed  PubMed Central  Google Scholar 

  33. Crotti A, Benner C, Kerman BE, Gosselin D, Lagier-Tourenne C, Zuccato C et al (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 17(4):513–521. https://doi.org/10.1038/nn.3668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller JR, Lo KK, Andre R, Hensman Moss DJ, Trager U, Stone TC et al (2016) RNA-Seq of Huntington’s disease patient myeloid cells reveals innate transcriptional dysregulation associated with proinflammatory pathway activation. Hum Mol Genet 25(14):2893–2904. https://doi.org/10.1093/hmg/ddw142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kwan W, Trager U, Davalos D, Chou A, Bouchard J, Andre R et al (2012) Mutant huntingtin impairs immune cell migration in Huntington disease. J Clin Invest 122(12):4737–4747. https://doi.org/10.1172/JCI64484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trager U, Andre R, Magnusson-Lind A, Miller JR, Connolly C, Weiss A et al (2015) Characterisation of immune cell function in fragment and full-length Huntington’s disease mouse models. Neurobiol Dis 73:388–398. https://doi.org/10.1016/j.nbd.2014.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18(4):225–242. https://doi.org/10.1038/nri.2017.125

    Article  CAS  PubMed  Google Scholar 

  38. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. https://doi.org/10.1146/annurev.immunol.021908.132528

    Article  CAS  PubMed  Google Scholar 

  39. Weinstein JR, Koerner IP, Moller T (2010) Microglia in ischemic brain injury. Fut Neurol 5(2):227–246. https://doi.org/10.2217/fnl.10.1

    Article  CAS  Google Scholar 

  40. Cuadros MA, Navascues J (1998) The origin and differentiation of microglial cells during development. Prog Neurobiol 56(2):173–189. https://doi.org/10.1016/s0301-0082(98)00035-5

    Article  CAS  PubMed  Google Scholar 

  41. Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33(6):2481–2493. https://doi.org/10.1523/JNEUROSCI.4440-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jimenez-Ferrer I, Jewett M, Tontanahal A, Romero-Ramos M, Swanberg M (2017) Allelic difference in Mhc2ta confers altered microglial activation and susceptibility to alpha-synuclein-induced dopaminergic neurodegeneration. Neurobiol Dis 106:279–290. https://doi.org/10.1016/j.nbd.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  43. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. https://doi.org/10.1152/physrev.00011.2010

    Article  CAS  PubMed  Google Scholar 

  44. Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6. https://doi.org/10.3389/fncel.2013.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6):559–577. https://doi.org/10.1097/00005072-198511000-00003

    Article  CAS  PubMed  Google Scholar 

  46. Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K et al (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60(2):161–172. https://doi.org/10.1093/jnen/60.2.161

    Article  CAS  PubMed  Google Scholar 

  47. Vonsattel JP, Keller C, Cortes Ramirez EP (2011) Huntington’s disease—neuropathology. Handb Clin Neurol 100:83–100. https://doi.org/10.1016/B978-0-444-52014-2.00004-5

    Article  PubMed  Google Scholar 

  48. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ et al (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130(Pt 7):1759–1766. https://doi.org/10.1093/brain/awm044

    Article  PubMed  Google Scholar 

  49. Simmons DA, Casale M, Alcon B, Pham N, Narayan N, Lynch G (2007) Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia 55(10):1074–1084. https://doi.org/10.1002/glia.20526

    Article  PubMed  Google Scholar 

  50. Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A (2019) The role of microglia and astrocytes in Huntington’s disease. Front Mol Neurosci 12:258. https://doi.org/10.3389/fnmol.2019.00258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kraft AD, Kaltenbach LS, Lo DC, Harry GJ (2012) Activated microglia proliferate at neurites of mutant huntingtin-expressing neurons. Neurobiol Aging 33(3):621 e17–621 e33. https://doi.org/10.1016/j.neurobiolaging.2011.02.015

    Article  CAS  Google Scholar 

  52. Wang N, Gray M, Lu XH, Cantle JP, Holley SM, Greiner E et al (2014) Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington’s disease. Nat Med 20(5):536–541. https://doi.org/10.1038/nm.3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li JW, Zong Y, Cao XP, Tan L, Tan L (2018) Microglial priming in Alzheimer’s disease. Ann Transl Med 6(10):176. https://doi.org/10.21037/atm.2018.04.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Petkau TL, Hill A, Connolly C, Lu G, Wagner P, Kosior N et al (2019) Mutant huntingtin expression in microglia is neither required nor sufficient to cause the Huntington’s disease-like phenotype in BACHD mice. Hum Mol Genet 28(10):1661–1670. https://doi.org/10.1093/hmg/ddz009

    Article  CAS  PubMed  Google Scholar 

  55. Khoshnan A, Ko J, Watkin EE, Paige LA, Reinhart PH, Patterson PH (2004) Activation of the IkappaB kinase complex and nuclear factor-kappaB contributes to mutant huntingtin neurotoxicity. J Neurosci 24(37):7999–8008. https://doi.org/10.1523/JNEUROSCI.2675-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khoshnan A, Patterson PH (2011) The role of IkappaB kinase complex in the neurobiology of Huntington’s disease. Neurobiol Dis 43(2):305–311. https://doi.org/10.1016/j.nbd.2011.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hacker H, Karin M (2006) Regulation and function of IKK and IKK-related kinases. Sci STKE 2006(357):re13. https://doi.org/10.1126/stke.3572006re13

    Article  PubMed  Google Scholar 

  58. Hsiao HY, Chen YC, Chen HM, Tu PH, Chern Y (2013) A critical role of astrocyte-mediated nuclear factor-kappaB-dependent inflammation in Huntington’s disease. Hum Mol Genet 22(9):1826–1842. https://doi.org/10.1093/hmg/ddt036

    Article  CAS  PubMed  Google Scholar 

  59. Hsiao HY, Chiu FL, Chen CM, Wu YR, Chen HM, Chen YC et al (2014) Inhibition of soluble tumor necrosis factor is therapeutic in Huntington’s disease. Hum Mol Genet 23(16):4328–4344. https://doi.org/10.1093/hmg/ddu151

    Article  CAS  PubMed  Google Scholar 

  60. Siew JJ, Chen HM, Chen HY, Chen HL, Chen CM, Soong BW et al (2019) Galectin-3 is required for the microglia-mediated brain inflammation in a model of Huntington’s disease. Nat Commun 10(1):3473. https://doi.org/10.1038/s41467-019-11441-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16(1):3–9. https://doi.org/10.1016/j.smim.2003.10.003

    Article  CAS  PubMed  Google Scholar 

  62. Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ (2010) Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol 90(2):230–245. https://doi.org/10.1016/j.pneurobio.2009.04.005

    Article  CAS  PubMed  Google Scholar 

  63. Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ (2005) A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 37(5):526–531. https://doi.org/10.1038/ng1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guillemin GJ, Smith DG, Smythe GA, Armati PJ, Brew BJ (2003) Expression of the kynurenine pathway enzymes in human microglia and macrophages. Adv Exp Med Biol 527:105–112. https://doi.org/10.1007/978-1-4615-0135-0_12

    Article  CAS  PubMed  Google Scholar 

  65. Guidetti P, Luthi-Carter RE, Augood SJ, Schwarcz R (2004) Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 17(3):455–461. https://doi.org/10.1016/j.nbd.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  66. Giorgini F, Moller T, Kwan W, Zwilling D, Wacker JL, Hong S et al (2008) Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia, and mice expressing a mutant huntingtin fragment. J Biol Chem 283(12):7390–7400. https://doi.org/10.1074/jbc.M708192200

    Article  CAS  PubMed  Google Scholar 

  67. Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP (1996) Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J 320(Pt 2):595–597. https://doi.org/10.1042/bj3200595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Donley DW, Olson AR, Raisbeck MF, Fox JH, Gigley JP (2016) Huntingtons disease mice infected with Toxoplasma gondii demonstrate early Kynurenine pathway activation, altered CD8+ T-cell responses, and premature mortality. PLoS One 11(9):e0162404. https://doi.org/10.1371/journal.pone.0162404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Björkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N et al (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205(8):1869–1877. https://doi.org/10.1084/jem.20080178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Banks WA, Plotkin SR, Kastin AJ (1995) Permeability of the blood-brain barrier to soluble cytokine receptors. Neuroimmunomodulation 2(3):161–165. https://doi.org/10.1159/000096887

    Article  CAS  PubMed  Google Scholar 

  71. Lois C, Gonzalez I, Izquierdo-Garcia D, Zurcher NR, Wilkens P, Loggia ML et al (2018) Neuroinflammation in Huntington’s disease: new insights with (11)C-PBR28 PET/MRI. ACS Chem Nerosci 9(11):2563–2571. https://doi.org/10.1021/acschemneuro.8b00072

    Article  CAS  Google Scholar 

  72. Politis M, Lahiri N, Niccolini F, Su P, Wu K, Giannetti P et al (2015) Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington’s disease gene carriers. Neurobiol Dis 83:115–121. https://doi.org/10.1016/j.nbd.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  73. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942–952. https://doi.org/10.1038/nn.4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J Comp Neurol 524(18):3865–3895. https://doi.org/10.1002/cne.24040

    Article  Google Scholar 

  75. Halassa MM, Haydon PG (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 72:335–355. https://doi.org/10.1146/annurev-physiol-021909-135843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Allen NJ (2014) Astrocyte regulation of synaptic behavior. Annu Rev Cell Dev Biol 30:439–463. https://doi.org/10.1146/annurev-cellbio-100913-013053

    Article  CAS  PubMed  Google Scholar 

  77. Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81(4):728–739. https://doi.org/10.1016/j.neuron.2014.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca(2)(+) signalling: an unexpected complexity. Nat Rev Neurosci 15(5):327–335. https://doi.org/10.1038/nrn3725

    Article  CAS  PubMed  Google Scholar 

  79. Chung WS, Allen NJ, Eroglu C (2015) Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol 7(9):a020370. https://doi.org/10.1101/cshperspect.a020370

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shigetomi E, Patel S, Khakh BS (2016) Probing the complexities of astrocyte calcium signaling. Trends Cell Biol 26(4):300–312. https://doi.org/10.1016/j.tcb.2016.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ben Haim L, Carrillo-de Sauvage MA, Ceyzeriat K, Escartin C (2015) Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 9:278. https://doi.org/10.3389/fncel.2015.00278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ben Haim L, Ceyzeriat K, Carrillo-de Sauvage MA, Aubry F, Auregan G, Guillermier M et al (2015) The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J Neurosci 35(6):2817–2829. https://doi.org/10.1523/JNEUROSCI.3516-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG et al (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32(18):6391–6410. https://doi.org/10.1523/JNEUROSCI.6221-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wakida NM, Cruz GMS, Ro CC, Moncada EG, Khatibzadeh N, Flanagan LA et al (2018) Phagocytic response of astrocytes to damaged neighboring cells. PLoS One 13(4):e0196153. https://doi.org/10.1371/journal.pone.0196153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gallo V, Deneen B (2014) Glial development: the crossroads of regeneration and repair in the CNS. Neuron 83(2):283–308. https://doi.org/10.1016/j.neuron.2014.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Myers RH, Vonsattel JP, Paskevich PA, Kiely DK, Stevens TJ, Cupples LA et al (1991) Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus. J Neuropathol Exp Neurol 50(6):729–742. https://doi.org/10.1097/00005072-199111000-00005

    Article  CAS  PubMed  Google Scholar 

  87. Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171(6):1001–1012. https://doi.org/10.1083/jcb.200508072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Menalled LB, Kudwa AE, Miller S, Fitzpatrick J, Watson-Johnson J, Keating N et al (2012) Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS One 7(12):e49838. https://doi.org/10.1371/journal.pone.0049838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lievens JC, Woodman B, Mahal A, Spasic-Boscovic O, Samuel D, Kerkerian-Le Goff L et al (2001) Impaired glutamate uptake in the R6 Huntington’s disease transgenic mice. Neurobiol Dis 8(5):807–821. https://doi.org/10.1006/nbdi.2001.0430

    Article  CAS  PubMed  Google Scholar 

  90. Langfelder P, Cantle JP, Chatzopoulou D, Wang N, Gao F, Al-Ramahi I et al (2016) Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat Neurosci 19(4):623–633. https://doi.org/10.1038/nn.4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang K, Kang MH, Askew C, Kang R, Sanders SS, Wan J et al (2010) Palmitoylation and function of glial glutamate transporter-1 is reduced in the YAC128 mouse model of Huntington disease. Neurobiol Dis 40(1):207–215. https://doi.org/10.1016/j.nbd.2010.05.027

    Article  CAS  PubMed  Google Scholar 

  92. Grewer C, Gameiro A, Rauen T (2014) SLC1 glutamate transporters. Pflugers Arch 466(1):3–24. https://doi.org/10.1007/s00424-013-1397-7

    Article  CAS  PubMed  Google Scholar 

  93. Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB (2002) Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain 125(Pt 8):1908–1922. https://doi.org/10.1093/brain/awf180

    Article  CAS  PubMed  Google Scholar 

  94. O’Donovan SM, Sullivan CR, McCullumsmith RE (2017) The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr 3(1):32. https://doi.org/10.1038/s41537-017-0037-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sari Y, Prieto AL, Barton SJ, Miller BR, Rebec GV (2010) Ceftriaxone-induced up-regulation of cortical and striatal GLT1 in the R6/2 model of Huntington’s disease. J Biomed Sci 17:62. https://doi.org/10.1186/1423-0127-17-62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miller BR, Dorner JL, Shou M, Sari Y, Barton SJ, Sengelaub DR et al (2008) Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington’s disease phenotype in the R6/2 mouse. Neuroscience 153(1):329–337. https://doi.org/10.1016/j.neuroscience.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  97. Estrada-Sanchez AM, Rebec GV (2012) Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington’s disease: interactions between neurons and astrocytes. Basal Ganglia 2(2):57–66. https://doi.org/10.1016/j.baga.2012.04.029

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chou SY, Weng JY, Lai HL, Liao F, Sun SH, Tu PH et al (2008) Expanded-polyglutamine huntingtin protein suppresses the secretion and production of a chemokine (CCL5/RANTES) by astrocytes. J Neurosci 28(13):3277–3290. https://doi.org/10.1523/JNEUROSCI.0116-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD et al (2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17(5):694–703. https://doi.org/10.1038/nn.3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rebec GV, Barton SJ, Ennis MD (2002) Dysregulation of ascorbate release in the striatum of behaving mice expressing the Huntington’s disease gene. J Neurosci 22(2):RC202

    Article  PubMed  PubMed Central  Google Scholar 

  101. Boussicault L, Herard AS, Calingasan N, Petit F, Malgorn C, Merienne N et al (2014) Impaired brain energy metabolism in the BACHD mouse model of Huntington’s disease: critical role of astrocyte-neuron interactions. J Cereb Blood Flow Metab 34(9):1500–1510. https://doi.org/10.1038/jcbfm.2014.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hong Y, Zhao T, Li XJ, Li S (2016) Mutant Huntingtin impairs BDNF release from Astrocytes by disrupting conversion of Rab3a-GTP into Rab3a-GDP. J Neurosci 36(34):8790–8801. https://doi.org/10.1523/JNEUROSCI.0168-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang L, Lin F, Wang J, Wu J, Han R, Zhu L et al (2012) Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes. Acta Biochim Biophys Sin (Shanghai) 44(3):249–258. https://doi.org/10.1093/abbs/gmr125

    Article  CAS  Google Scholar 

  104. Iglesias J, Morales L, Barreto GE (2017) Metabolic and inflammatory adaptation of reactive astrocytes: role of PPARs. Mol Neurobiol 54(4):2518–2538. https://doi.org/10.1007/s12035-016-9833-2

    Article  CAS  PubMed  Google Scholar 

  105. Sochocka M, Diniz BS, Leszek J (2017) Inflammatory response in the CNS: friend or foe? Mol Neurobiol 54(10):8071–8089. https://doi.org/10.1007/s12035-016-0297-1

    Article  CAS  PubMed  Google Scholar 

  106. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967. https://doi.org/10.1016/j.immuni.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  107. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647. https://doi.org/10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fan Y, Mao R, Yang J (2013) NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4(3):176–185. https://doi.org/10.1007/s13238-013-2084-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Weiss A, Träger U, Wild EJ, Grueninger S, Farmer R, Landles C et al (2012) Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J Clin Invest 122(10):3731–3736. https://doi.org/10.1172/jci64565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Park HJ, Lee SW, Im W, Kim M, Van Kaer L, Hong S (2019) iNKT cell activation exacerbates the development of Huntington’s disease in R6/2 transgenic mice. Mediators Inflamm 2019:3540974. https://doi.org/10.1155/2019/3540974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pérez-Rodríguez MJ, Ibarra-Sánchez A, Román-Figueroa A, Pérez-Severiano F, González-Espinosa C (2020) Mutant Huntingtin affects toll-like receptor 4 intracellular trafficking and cytokine production in mast cells. J Neuroinflammation 17(1):95. https://doi.org/10.1186/s12974-020-01758-9

    Article  PubMed  PubMed Central  Google Scholar 

  112. Pido-Lopez J, Andre R, Benjamin AC, Ali N, Farag S, Tabrizi SJ et al (2018) In vivo neutralization of the protagonist role of macrophages during the chronic inflammatory stage of Huntington’s disease. Sci Rep 8(1):11447. https://doi.org/10.1038/s41598-018-29792-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gelderblom H, Wüstenberg T, McLean T, Mütze L, Fischer W, Saft C et al (2017) Bupropion for the treatment of apathy in Huntington’s disease: a multicenter, randomised, double-blind, placebo-controlled, prospective crossover trial. PLoS One 12(3):e0173872. https://doi.org/10.1371/journal.pone.0173872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sciacca G, Cicchetti F (2017) Mutant huntingtin protein expression and blood-spinal cord barrier dysfunction in huntington disease. Ann Neurol 82(6):981–994. https://doi.org/10.1002/ana.25107

    Article  CAS  PubMed  Google Scholar 

  115. Ajami B, Samusik N, Wieghofer P, Ho PP, Crotti A, Bjornson Z et al (2018) Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat Neurosci 21(4):541–551. https://doi.org/10.1038/s41593-018-0100-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wild E, Magnusson A, Lahiri N, Krus U, Orth M, Tabrizi SJ et al (2011) Abnormal peripheral chemokine profile in Huntington’s disease. PLoS Curr 3:Rrn1231. https://doi.org/10.1371/currents.RRN1231

    Article  PubMed  PubMed Central  Google Scholar 

  117. Niemelä V, Burman J, Blennow K, Zetterberg H, Larsson A, Sundblom J (2018) Cerebrospinal fluid sCD27 levels indicate active T cell-mediated inflammation in premanifest Huntington’s disease. PLoS One 13(2):e0193492. https://doi.org/10.1371/journal.pone.0193492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. von Essen MR, Hellem MNN, Vinther-Jensen T, Ammitzboll C, Hansen RH, Hjermind LE et al (2020) Early intrathecal T helper 17.1 cell activity in Huntington disease. Ann Neurol 87(2):246–255. https://doi.org/10.1002/ana.25647

    Article  CAS  Google Scholar 

  119. Husby G, Li L, Davis LE, Wedege E, Kokmen E, Williams RC Jr (1977) Antibodies to human caudate nucleus neurons in Huntington’s chorea. J Clin Invest 59(5):922–932. https://doi.org/10.1172/jci108714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lee D-H, Heidecke H, Schröder A, Paul F, Wachter R, Hoffmann R et al (2014) Increase of angiotensin II type 1 receptor auto-antibodies in Huntington’s disease. Mol Neurodegen 9(1):49. https://doi.org/10.1186/1750-1326-9-49

    Article  CAS  Google Scholar 

  121. Bouchard J, Truong J, Bouchard K, Dunkelberger D, Desrayaud S, Moussaoui S et al (2012) Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington’s disease. J Neurosci 32(50):18259–18268. https://doi.org/10.1523/jneurosci.4008-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fong Y, Moldawer LL, Marano M, Wei H, Barber A, Manogue K et al (1989) Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins. Am J Physiol 256(3 Pt 2):R659–R665. https://doi.org/10.1152/ajpregu.1989.256.3.R659

    Article  CAS  PubMed  Google Scholar 

  123. Langen RC, Schols AM, Kelders MC, Wouters EF, Janssen-Heininger YM (2001) Inflammatory cytokines inhibit myogenic differentiation through activation of nuclear factor-kappaB. FASEB J 15(7):1169–1180

    Article  CAS  PubMed  Google Scholar 

  124. Spiegelman BM, Hotamisligil GS (1993) Through thick and thin: wasting, obesity, and TNF alpha. Cell 73(4):625–627

    Article  CAS  PubMed  Google Scholar 

  125. Lee SW, Park HJ, Im W, Kim M, Hong S (2018) Repeated immune activation with low-dose lipopolysaccharide attenuates the severity of Huntington’s disease in R6/2 transgenic mice. Anim Cells Syst (Seoul) 22(4):219–226. https://doi.org/10.1080/19768354.2018.1473291

    Article  CAS  PubMed Central  Google Scholar 

  126. Wang CE, Li S, Li XJ (2010) Lack of interleukin-1 type 1 receptor enhances the accumulation of mutant huntingtin in the striatum and exacerbates the neurological phenotypes of Huntington’s disease mice. Mol Brain 3:33. https://doi.org/10.1186/1756-6606-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trent M. Woodruff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, J.D., Lo, M.W., Fung, J.N.T., Woodruff, T.M. (2022). Neuroinflammation in Huntington’s Disease . In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1712-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1712-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1711-3

  • Online ISBN: 978-1-0716-1712-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics