Skip to main content

Aptamer Detection of Neurodegenerative Disease Biomarkers

  • Protocol
  • First Online:
Neurodegenerative Diseases Biomarkers

Part of the book series: Neuromethods ((NM,volume 173))

Abstract

Neurodegenerative disease is a kind of disease caused by the degeneration of neurons and myelin sheaths. With the aging of the global population, the increase of the incidence of neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD), has become a great challenge for society at large. Most of these diseases relate to misfolded proteins in the central nervous system, such as: amyloid-ß, tau, α-synuclein, huntingtin, and prion proteins. Additionally, there is a large amount of evidence linking vascular dysfunction and vascular risk factors with the pathogenesis of neurodegenerative diseases, such as vascular dementia (VAD). It is also possible to detect neurodegenerative diseases by detecting angiogenesis biomarkers. As biomarkers of neurodegenerative diseases, detecting these proteins can potentially allow for the slowing down or prevent the onset of these diseases. Aptamers can be used to detect these neurodegenerative disease biomarkers. Aptamer, a small oligonucleotide sequence, is screened in vitro, which can bind to corresponding protein markers with high affinity and specificity. As an ideal biorecognition element for neurodegenerative disease detection, the chapter summarizes recent advances on aptamers and their application in the detection of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 109.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 149.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Trojanowski JQ, Hampel H (2011) Neurodegenerative disease biomarkers: guideposts for disease prevention through early diagnosis and intervention. Prog Neorobiol 95(4):491–495. https://doi.org/10.1016/j.pneurobio.2011.07.004

    Article  Google Scholar 

  2. Qu J, Yu S, Zheng Y, Zheng Y, Yang H, Zhang J (2016) Aptamer and its applications in neurodegenerative diseases. Cell Mol Life Sci 74(4):683–695. https://doi.org/10.1007/s00018-016-2345-4

    Article  CAS  PubMed  Google Scholar 

  3. Gallucci M, Limbucci N, Catalucci A, Caulo M (2008) Neurodegenerative diseases. Radiol Clin North Am 46(4):799–817. https://doi.org/10.1016/j.rcl.2008.06.002

    Article  PubMed  Google Scholar 

  4. Haenseler W, Rajendran L (2019) Concise review: modelling neurodegenerative diseases with human pluripotent stem cell derived microglia. Stem Cells 37:724–730. https://doi.org/10.1002/stem.2995

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miller DH (2004) Biomarkers and surrogate outcomes in neurodegenerative disease: lessons from multiple sclerosis. NeuroRx 1(2):284–294. https://doi.org/10.1602/neurorx.1.2.284

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bouvier-Müller A, Ducongé F (2018) Nucleic acid aptamers for neurodegenerative diseases. Biochimie 145:73–83. https://doi.org/10.1016/j.biochi.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  7. Henley SM, Bates GP, Tabrizi SJ (2005) Biomarkers for neurodegenerative diseases. Curr Opin Neurol 18(6):698–705. https://doi.org/10.1097/01.wco.0000186842.51129.cb

    Article  PubMed  Google Scholar 

  8. Chen JA, Fears SC, Jasinska AJ, Huang A, Al-Sharif NB, Scheibel KE, Coppola G (2018) Neurodegenerative disease biomarkers Aβ1-40, Aβ1-42, tau, and p-tau181 in the vervet monkey cerebrospinal fluid: relation to normal aging, genetic influences, and cerebral amyloid angiopathy. Brain Behav 8(2):e00903. https://doi.org/10.1002/brb3.903

    Article  PubMed  PubMed Central  Google Scholar 

  9. Castrillon R, Acien A, Orozco-Arroyave JR, Morales A, Vargas JF, Vera-Rodriguez R, Villegas A (2019) Characterization of the handwriting skills as a biomarker for Parkinson’s disease. In: 2019 14th IEEE international conference on Automatic Face & Gesture Recognition (FG 2019). https://doi.org/10.1109/FG.2019.8756508

    Chapter  Google Scholar 

  10. Westergard L, Christensen HM, Harris DA (2007) The cellular prion protein (PrPC): its physiological function and role in disease. Biochim Biophys Acta 1772(6):629–644. https://doi.org/10.1016/j.bbadis.2007.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H, Jaafari MR (2017) Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 233(4):2949–2965. https://doi.org/10.1002/jcp.26049

    Article  CAS  PubMed  Google Scholar 

  12. Vallon M, Chang J, Zhang H, Kuo CJ (2014) Developmental and pathological angiogenesis in the central nervous system. Cell Mol Life Sci 71(18):3489–3506. https://doi.org/10.1007/s00018-014-1625-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grammas P, Martinez J, Miller B (2011) Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. Expert Rev Mol Med 13:e19. https://doi.org/10.1017/S1462399411001918

    Article  CAS  PubMed  Google Scholar 

  14. Sosic A, Meneghello A, Antognoli A, Cretaio E, Gatto B (2013) Development of a multiplex Sandwich aptamer microarray for the detection of VEGF165 and thrombin. Sensors 13(10):13425–13438. https://doi.org/10.3390/s131013425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cho H, Yeh EC, Sinha R, Laurence TA, Bearinger JP, Lee LP (2012) Single-step Nanoplasmonic VEGF165 Aptasensor for early cancer diagnosis. ACS Nano 6(9):7607–7614. https://doi.org/10.1021/nn203833d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21(10):1192–1199. https://doi.org/10.1038/nbt873

    Article  CAS  PubMed  Google Scholar 

  17. Cagnin S, Caraballo M, Guiducci C, Martini P, Ross M, SantaAna M, Lanfranchi G (2009) Overview of electrochemical DNA biosensors: new approaches to detect the expression of life. Sensors 9(4):3122–3148. https://doi.org/10.3390/s90403122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen M, Hou C, Huo D, Yang M, Fa H (2016) An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite. Appl Surf Sci 364:703–709. https://doi.org/10.1016/j.apsusc.2015.12.203

    Article  CAS  Google Scholar 

  19. Phillips JA, Xu Y, Xia Z, Fan ZH, Tan W (2009) Enrichment of cancer cells using aptamers immobilized on a Microfluidic Channel. Anal Chem 81(3):1033–1039. https://doi.org/10.1021/ac802092j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yuan Q, Liu Y, Ye C, Sun H, Dai D, Wei Q, Lin CT (2018) Highly stable and regenerative graphene–diamond hybrid electrochemical biosensor for fouling target dopamine detection. Biosens Bioelectron 111:117–123. https://doi.org/10.1016/j.bios.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  21. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. https://doi.org/10.1126/science.2200121

    Article  CAS  PubMed  Google Scholar 

  22. Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743. https://doi.org/10.1021/cr0306743

    Article  CAS  PubMed  Google Scholar 

  23. Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC Trends Anal Chem 27(2):108–117. https://doi.org/10.1016/j.trac.2007.12.004

    Article  CAS  Google Scholar 

  24. Muller J, El-Maarri O, Oldenburg J, Potzsch B, Mayer G (2008) Monitoring the progression of the in vitro selection of nucleic acid aptamers by denaturing highperformance liquid chromatography. Anal Bioanal Chem 390:1033–1037. https://doi.org/10.1007/s00216-007-1699-8

    Article  CAS  PubMed  Google Scholar 

  25. Khan N, Maddaus A, Song E (2018) A low-cost inkjet-printed aptamer-based electrochemical biosensor for the selective detection of lysozyme. Biosensors 8(1):7. https://doi.org/10.3390/bios8010007

    Article  CAS  PubMed Central  Google Scholar 

  26. Zhang Y, Lai B, Juhas M (2019) Recent advances in aptamer discovery and applications. Molecules 24(5):941. https://doi.org/10.3390/molecules24050941

    Article  CAS  PubMed Central  Google Scholar 

  27. Zhuo Z, Yu Y, Wang M, Li J, Zhang Z, Liu J, Wu X, Lu A, Zhang G, Zhang B (2017) Recent advances in SELEX technology and aptamer applications in biomedicine. Int J Mol Sci 18(10):2142. https://doi.org/10.3390/ijms18102142

    Article  CAS  PubMed Central  Google Scholar 

  28. Ruscito A, McConnell EM, Koudrina A, Velu R, Mattice C, Hunt V, DeRosa MC (2017) In vitro selection and characterization of DNA aptamers to a small molecule target. Curr Protoc Chem Biol:233–268. https://doi.org/10.1002/cpch.28

  29. Alsager OA, Kumar S, Hodgkiss JM (2017) A lateral flow Aptasensor for small molecule targets exploiting adsorption and desorption interactions on Gold nanoparticles. Anal Chem 89(14):7416–7424. https://doi.org/10.1021/acs.analchem.7b00906

    Article  CAS  PubMed  Google Scholar 

  30. Peng Y, Huang H, Zhang Y, Kang C, Chen S, Song L, Zhong C (2018) A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat Commun 9(1). https://doi.org/10.1038/s41467-017-02600-2

  31. Kulbachinskiy AV (2007) Methods for selection of aptamers to protein targets. Biochem 72(13):1505–1518. https://doi.org/10.1134/s000629790713007x

    Article  CAS  Google Scholar 

  32. Bonanni A, Pumera M (2011) Graphene platform for hairpin-DNA-based Impedimetric Genosensing. ACS Nano 5(3):2356–2361. https://doi.org/10.1021/nn200091p

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Wang C, Bo H, Gao Q, Qi H, Zhang C (2013) Specific recognition of a single guanine bulge in dsDNA using a surface plasmon resonance sensor with immobilized 2-(2-aminoacetyl)amino-5,6,7-trimethyl-1,8-naphthyridine. Sensor Actuator B Chem 177:800–806. https://doi.org/10.1016/j.snb.2012.11.026

    Article  CAS  Google Scholar 

  34. Lax P, Becerra AG, Soteras F, Cabello M, Doucet ME (2011) Effect of the arbuscular mycorrhizal fungus glomus intraradices on the false root-knot nematode Nacobbus aberrans in tomato plants. Biol Fertil Soils 47(5):591–597. https://doi.org/10.1007/s00374-010-0514-4

    Article  Google Scholar 

  35. Gibriel A, Adel O (2017) Advances in ligase chain reaction and ligation-based amplifications for genotyping assays: detection and applications. Mutat Res/Rev Mutat Res 773:66–90. https://doi.org/10.1016/j.mrrev.2017.05.001

    Article  CAS  Google Scholar 

  36. Kim M, Kim DM, Kim KS, Jung W, Kim DE (2018) Applications of cancer cell-specific aptamers in targeted delivery of anticancer therapeutic agents. Molecules 23(4):830. https://doi.org/10.3390/molecules23040830

    Article  CAS  PubMed Central  Google Scholar 

  37. Bai C, Lu Z, Jiang H, Yang Z, Liu X, Ding H, Shao N (2018) Aptamer selection and application in multivalent binding-based electrical impedance detection of inactivated H1N1 virus. Biosens Bioelectron 110:162–167. https://doi.org/10.1016/j.bios.2018.03.047

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Lee JS (2019) Recent developments in affinity-based selection of aptamers for binding disease-related protein targets. Chem Pap 2019:1–17. https://doi.org/10.1007/s11696-019-00842-6

    Article  CAS  Google Scholar 

  39. Yang Q, Zhou L, Wu YX, Zhang K, Cao Y, Zhou Y, Gan N (2018) A two-dimensional metal–organic framework nanosheets-based fluorescence resonance energy transfer aptasensor with circular strand-replacement DNA polymerization target-triggered amplification strategy for homogenous detection of antibiotics. Anal Chem Acta 1020:1–8. https://doi.org/10.1016/j.aca.2018.02.058

    Article  CAS  Google Scholar 

  40. Kuusisto E, Salminen A, Alafuzoff I (2001) Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12(10):2085–2090. https://doi.org/10.1097/00001756-200107200-00009

    Article  CAS  PubMed  Google Scholar 

  41. Davidsson P, Sjögren M (2005) The use of proteomics in biomarker discovery in neurodegenerative diseases. Dis Markers 21(2):81–92. https://doi.org/10.1155/2005/848676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi M, Sui YT, Peskind ER, Li G, Hwang H, Devic I, Ginghina C, Edgar JS, Pan C, Goodlett DR (2011) Salivary tau species are potential biomarkers of Alzheimer’s disease. J Alzheimers Dis 27(2):299–305. https://doi.org/10.3233/JAD-2011-110731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saini S, Arora K (2014) Study analysis on the different image segmentation techniques. IJICT 4(14):1445–1452

    Google Scholar 

  44. Suwalka I, Agrawal N (2016) Assessment of segmentation techniques for neurodegenerative disease detection. ICCPCT. https://doi.org/10.1109/ICCPCT.2016.7530187

  45. Ngounou Wetie AG, Sokolowska I, Wormwood K, Beglinger K, Michel T, Thome J, Woods AG (2013) Mass spectrometry for the detection of potential psychiatric biomarkers. J Mol Psychiatr 1(1):8. https://doi.org/10.1186/2049-9256-1-8

    Article  Google Scholar 

  46. Bois JP, Scott C, Chareonthaitawee P, Gibbons RJ, Rodriguez-Porcel M (2019) Phase analysis single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) detects dyssynchrony in myocardial scar and increases specificity of MPI. EJNMMI Res 9:11. https://doi.org/10.1186/s13550-019-0476-y

    Article  PubMed  PubMed Central  Google Scholar 

  47. Barthel H, Schroeter ML, Hoffmann KT, Sabri O (2015) PET/MR in dementia and other neurodegenerative diseases. Semin Nucl Med 45(3):224–233. https://doi.org/10.1053/j.semnuclmed.2014.12.003

    Article  PubMed  Google Scholar 

  48. Goñi F, Martá-Ariza M, Peyser D, Herline K, Wisniewski T (2017) Production of monoclonal antibodies to pathologic β-sheet oligomeric conformers in neurodegenerative diseases. Sci Rep 7(1):9881. https://doi.org/10.1038/s41598-017-10393-z

    Article  PubMed  PubMed Central  Google Scholar 

  49. Martins-Gomes C, Silva M (2018) Western blot methodologies for analysis of in vitro protein expression induced by teratogenic agents. Methods Mol Biol 1797:191–203. https://doi.org/10.1007/978-1-4939-7883-0_9

    Article  CAS  PubMed  Google Scholar 

  50. Yang J, Xu CQ, Nutiu R, Li Y (2004) Immobilized DNA biosensor based on evanescent wave long-period fiber gratings. In: Photonics North 2004: photonic applications in astronomy, biomedicine, imaging, materials processing, and education. https://doi.org/10.1117/12.567502

    Chapter  Google Scholar 

  51. Mojiri A, Ohashi A, Ozaki N, Shoiful A, Kindaichi T (2018) Pollutant removal from synthetic aqueous solutions with a combined electrochemical oxidation and adsorption method. Int J Environ Res Public Health 15(7):1443. https://doi.org/10.3390/ijerph15071443

    Article  CAS  PubMed Central  Google Scholar 

  52. Fu X, Huang R, Wang J, Chang B (2013) Sensitive electrochemical immunoassay of a biomarker based on biotin-avidin conjugated DNAzyme concatamer with signal tagging. RSC Adv 3(32):13451. https://doi.org/10.1039/C3RA41429A

    Article  CAS  Google Scholar 

  53. Park H-S, Hwang S-J, Choy J-H (2001) Relationship between chemical bonding character and electrochemical performance in nickel-substituted lithium manganese oxides. J Phys Chem 105:4860–4866. https://doi.org/10.1021/jp010079+

    Article  CAS  Google Scholar 

  54. Kong D, Liao F, Lin Y, Cheng L, Peng H, Zhang J, Fan H (2018) A homogenous electrochemical sensing DNA sensor by using bare au electrode based on potential-assisted chemisorption technique. Sensor Actuat B Chem 266:288–293. https://doi.org/10.1016/j.snb.2018.03.011

    Article  CAS  Google Scholar 

  55. Zhao N, Pei SN, Qi J, Zeng Z, Iyer SP, Lin P, Zu Y (2015) Oligonucleotide aptamer-drug conjugates for targeted therapy of acute myeloid leukemia. Biomaterials 67:42–51. https://doi.org/10.1016/j.biomaterials.2015.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lucarelli F, Kicela A, Palchetti I, Marrazza G, Mascini M (2002) Electrochemical DNA biosensor for analysis of wastewater samples. Bioelectrochemistry 58(1):113–118. https://doi.org/10.1016/s1567-5394(02)00133-0

    Article  CAS  PubMed  Google Scholar 

  57. Mogha NK, Sahu V, Sharma RK, Masram DT (2018) Reduced graphene oxide nanoribbon immobilized gold nanoparticle based electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis. J Mater Chem B 6(31):5181–5187. https://doi.org/10.1039/C8TB01604F

    Article  CAS  PubMed  Google Scholar 

  58. Jiang D, Ge P, Wang L, Jiang H, Yang M, Yuan L, Ju X (2019) A novel electrochemical mast cell-based paper biosensor for the rapid detection of milk allergen casein. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2019.01.050

  59. Rahman M, Heng LY, Futra D, Chiang CP, Rashid ZA, Ling TL (2017) A highly sensitive electrochemical DNA biosensor from acrylic-gold nano-composite for the determination of Arowana fish gender. Nanoscale Res Lett 12(1):484. https://doi.org/10.1016/j.snb.2016.11.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang J, Qi H, Li Y, Yang J, Gao Q, Zhang C (2008) Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex. Anal Chem 80(8):2888–2894. https://doi.org/10.1021/ac701995g

    Article  CAS  PubMed  Google Scholar 

  61. Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, Santhosh DJ, Alagar M (2011) Specific detection of mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Anal Biochem 417(1):73–79. https://doi.org/10.1016/j.ab.2011.05.034

    Article  CAS  PubMed  Google Scholar 

  62. Hu P, Liu N, Wu KY, Zhai LY, Xie BP, Sun B, Chen JX (2018) Successive and specific detection of Hg2+ and I– by a DNA@MOF biosensor: experimental and simulation studies. Inorg Chem 57(14):8382–8389. https://doi.org/10.1021/acs.inorgchem.8b01051

    Article  CAS  PubMed  Google Scholar 

  63. Kim DK, Kerman K, Saito M, Sathuluri RR, Endo T, Yamamura S, Tamiya E (2007) Label-free DNA biosensor based on localized surface Plasmon resonance coupled with interferometry. Anal Chem 79(5):1855–1864. https://doi.org/10.1021/ac061909o

    Article  CAS  PubMed  Google Scholar 

  64. Zari N, Amine A, Ennaji MM (2009) Label-free DNA biosensor for electrochemical detection of short DNA sequences related to human papilloma virus. Anal Lett 42(3):519–535. https://doi.org/10.1080/00032710802421897

    Article  CAS  Google Scholar 

  65. Wang Z, Yang Y, Leng K, Li J, Zheng F, Shen G, Yu R (2008) A sequence-selective electrochemical DNA biosensor based on HRP-Labeled probe for colorectal cancer DNA detection. Anal Lett 41(1):24–35. https://doi.org/10.1080/00032710701746873

    Article  CAS  Google Scholar 

  66. Wang J, Shi A, Fang X, Han X, Zhang Y (2014) Ultrasensitive electrochemical supersandwich DNA biosensor using a glassy carbon electrode modified with gold particle-decorated sheets of graphene oxide. Microchim Acta 181(9–10):935–940. https://doi.org/10.1007/s00604-014-1182-0

    Article  CAS  Google Scholar 

  67. Chen X, Xie H, Seow ZY, Gao Z (2010) An ultrasensitive DNA biosensor based on enzyme-catalyzed deposition of cupric hexacyanoferrate nanoparticles. Biosens Bioelectron 25(6):1420–1426. https://doi.org/10.1016/j.bios.2009.10.041

    Article  CAS  PubMed  Google Scholar 

  68. Huang B, Liu J, Lai L, Yu F, Ying X, Ye BC, Li Y (2017) A free-standing electrochemical sensor based on graphene foam-carbon nanotube composite coupled with gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. J Electroanal Chem 801:129–134. https://doi.org/10.1016/j.jelechem.2017.07.029

    Article  CAS  Google Scholar 

  69. Zamfir LG, Fortgang P, Farre C, Ripert M, De Crozals G, Jaffrezic-Renault N, Chaix C (2015) Synthesis and electroactivated addressing of ferrocenyl and azido-modified stem-loop oligonucleotides on an integrated electrochemical device. Electrochim Acta 164:62–70. https://doi.org/10.1016/j.electacta.2015.02.167

    Article  CAS  Google Scholar 

  70. Zhang Y, Huang L (2012) Label-free electrochemical DNA biosensor based on a glassy carbon electrode modified with gold nanoparticles, polythionine, and graphene. Microchim Acta 176(3-4):463–470. https://doi.org/10.1007/s00604-011-0742-9

    Article  CAS  Google Scholar 

  71. Yan F, Wang F, Chen Z (2011) Aptamer-based electrochemical biosensor for label-free voltammetric detection of thrombin and adenosine. Sensor Actuat B Chem 160(1):1380–1385. https://doi.org/10.1016/j.snb.2011.09.081

    Article  CAS  Google Scholar 

  72. Lee JG, Yun K, Lim GS, Lee SE, Kim S, Park JK (2007) DNA biosensor based on the electrochemiluminescence of Ru(bpy)3 2+ with DNA-binding intercalators. Bioelectrochemistry 70(2):228–234. https://doi.org/10.1016/j.bioelechem.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  73. Sekhon SS, Ahn G, Park GY, Park DY, Lee SH, Ahn JY, Kim YH (2019) The role of aptamer loaded exosome complexes in the neurodegenerative diseases. Toxicol Environ Health Sci 11(2):85–93. https://doi.org/10.1007/s13530-019-0392-6

    Article  Google Scholar 

  74. Cowperthwaite MC, Ellington AD (2008) Bioinformatic analysis of the contribution of primer sequences to aptamer structures. J Mol Evol 67(1):95–102. https://doi.org/10.1007/s00239-008-9130-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Toh SY, Citartan M, Gopinath SC, Tang TH (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403. https://doi.org/10.1016/j.bios.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  76. Rhie A, Kirby L, Sayer N, Wellesley R, Disterer P, Sylvester I, Tahiri-Alaoui A (2003) Characterization of 2′-Fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion. J Biol Chem 278(41):39697–39705. https://doi.org/10.1074/jbc.M305297200

    Article  CAS  PubMed  Google Scholar 

  77. Li L, Hou J, Liu X, Guo Y, Wu Y, Zhang L, Yang Z (2014) Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 35(12):3840–3850. https://doi.org/10.1016/j.biomaterials.2014.01.019

    Article  CAS  PubMed  Google Scholar 

  78. Ma X, Du C, Zhang J, Shang M, Song W (2019) A system composed of vanadium (IV) disulfide quantum dots and molybdenum (IV) disulfide nanosheets for use in an aptamer-based fluorometric tetracycline assay. Microchim Acta 186(12). https://doi.org/10.1007/s00604-019-3983-7

  79. Zhang S, Fan J, Wang Y, Li D, Jia X, Yuan Y, Cheng Y (2019) Tunable aggregation-induced circularly polarized luminescence of chiral AIEgens via the regulation of mono−/di-substituents of molecules or nanostructures of self-assemblies. Mater Chem Front 00:1–3. https://doi.org/10.1039/C9QM00358D

    Article  Google Scholar 

  80. Kolb G, Reigadas S, Castanotto D, Faure A, Ventura M, Rossi JJ, Toulme JJ (2006) Endogenous expression of an Anti-TAR aptamer reduces HIV-1 replication. RNA Biol 3(4):150–156. https://doi.org/10.4161/rna.3.4.3811

    Article  CAS  PubMed  Google Scholar 

  81. Zhang Y, Wang M, Huang L (2012) Fabrication of a sensitive electrochemical biosensor for detection of DNA hybridization based on Gold nanoparticles/CuO Nanospindles modified glassy carbon electrode. Chin J Chem 30(1):167–172. https://doi.org/10.1002/cjoc.201180451

    Article  CAS  Google Scholar 

  82. Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O (2015) Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med 21(4):223–232. https://doi.org/10.1016/j.molmed.2015.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen W, Jin F, Cao G, Mei R, Wang Y, Long P, Ge W (2018) ApoE4 may be a promising target for treatment of coronary heart disease and Alzheimer’s disease. Curr Drug Targets 19(9):1038–1044. https://doi.org/10.2174/1389450119666180406112050

    Article  CAS  PubMed  Google Scholar 

  84. Chakrabarti S, Khemka VK, Banerjee A, Chatterjee G, Ganguly A, Biswas A (2015) Metabolic risk factors of sporadic Alzheimer’s disease: implications in the pathology, pathogenesis and treatment. Aging Dis 6(4):282–299. https://doi.org/10.14336/AD.2014.002

    Article  PubMed  PubMed Central  Google Scholar 

  85. Davatzikos C, Resnick SM, Wu X, Parmpi P, Clark CM (2008) Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage 41(4):1220–1227. https://doi.org/10.1016/j.neuroimage.2008.03.050

    Article  CAS  PubMed  Google Scholar 

  86. Krylova SM, Musheev M, Nutiu R, Li Y, Lee G, Krylov SN (2005) Tau protein binds single-stranded DNA sequence specifically—the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 579:1371–1375. https://doi.org/10.1016/j.febslet.2005.01.032

    Article  CAS  PubMed  Google Scholar 

  87. Kim JH, Kim E, Choi WH, Lee J, Lee JH, Lee H, Kim DE, Suh YH, Lee MJ (2016) Inhibitory RNA aptamers of tau oligomerization and their neuroprotective roles against proteotoxic stress. Mol Pharm 13:2039–2048. https://doi.org/10.1021/acs.molpharmaceut.6b00165

    Article  CAS  PubMed  Google Scholar 

  88. Esteves-Villanueva JO, Trzeciakiewicz H, Martic S (2014) A protein-based electrochemical biosensor for detection of tau protein, a neurodegenerative disease biomarker. Analyst 139:2823–2831. https://doi.org/10.1039/c4an00204k

    Article  CAS  PubMed  Google Scholar 

  89. Liu L, Xia N, Jiang M, Huang N, Guo S, Li S, Zhang S (2015) Electrochemical detection of amyloid-β oligomer with the signal amplification of alkaline phosphatase plus electrochemical- chemical-chemical redox cycling. J Electroanal Chem 754:40–45. https://doi.org/10.1016/j.jelechem.2015.06.017

    Article  CAS  Google Scholar 

  90. Liu L, Zhao F, Ma F, Zhang L, Yang S, Xia N (2013) Electrochemical detection of beta-amyloid peptides on electrode covered with N-terminus-specific antibody based on electrocatalytic O2 reduction by Abeta(1-16)-heme-modified gold nanoparticles. Biosens Bioelectron 49:231–235. https://doi.org/10.1016/j.bios.2013.05.028

    Article  CAS  PubMed  Google Scholar 

  91. Rahimi F, Murakami K, Summers J L, Chen C H, Bitan G (2009) RNA aptamers generated against oligomeric Abeta40 recognize common amyloid aptatopes with low specificity but high sensitivity. PloS one 4 (2009), e7694. https://doi.org/10.1371/journal.pone.0089901

  92. Liu Y, Xu LP, Wang S, Yang W, Wen Y, Zhang X (2015) An ultrasensitive electrochemical immunosensor for apolipoprotein E4 based on fractal nanostructures and enzyme amplification. Biosens Bioelectron 71:396–400. https://doi.org/10.1016/j.bios.2015.04.068

    Article  CAS  PubMed  Google Scholar 

  93. Wang SX, Acha D, Shah AJ, Hills F, Roitt I, Demosthenous A, Bayford RH (2017) Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor. Biosens Bioelectron 92:482–488. https://doi.org/10.1016/j.bios.2016.10.077

    Article  CAS  PubMed  Google Scholar 

  94. Kamel F (2013) Paths from pesticides to Parkinson’s. Science 341(6147):722–723. https://doi.org/10.1126/science.1243619

    Article  CAS  PubMed  Google Scholar 

  95. Alvarez-Martos I, Ferapontova EE (2016) Electrochemical label-free aptasensor for specifific analysis of dopamine in serum in the presence of structurally related neurotransmitters. Anal Chem 88:3608e3616. https://doi.org/10.1021/acs.analchem.5b04207

    Article  CAS  Google Scholar 

  96. Tsukakoshi K, Harada R, Sode K, Ikebukuro K (2010) Screening of DNA aptamer which binds to alpha-synuclein. Biotechnol Lett 32:643–648. https://doi.org/10.1007/s10529-010-0200-5

    Article  CAS  PubMed  Google Scholar 

  97. Mannironi C, Di A, Nardo FP, Tocchini-Valentini GP (1997) In vitro selection of dopamine RNA ligands. Biochem 36:9726e9734. https://doi.org/10.1021/bi9700633

    Article  Google Scholar 

  98. Tsukakoshi K, Abe K, Sode K, Ikebukuro K (2012) Selection of DNA aptamers that recognize alpha-synuclein oligomers using a competitive screening method. Anal Chem 84:5542e5547. https://doi.org/10.1021/ac300330g

    Article  CAS  Google Scholar 

  99. Walsh R, DeRosa MC (2009) Retention of function in the DNA homolog of the RNA dopamine aptamer. Biochem Biophys Res Commun 388(4):732–735. https://doi.org/10.1016/j.bbrc.2009.08.084

    Article  CAS  PubMed  Google Scholar 

  100. Weng CH, Huang CJ, Lee GB (2012) Screening of aptamers on microfluidic systems for clinical applications. Sensor 12(7):9514–9529. https://doi.org/10.3390/s120709514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Munoz-Sanjuan I, Bates GP (2011) The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease. J Clin Investig 121(2):476–483. https://doi.org/10.1172/JCI45364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Skogen M, Roth J, Yerkes S, Parekh-Olmedo H, Kmiec E (2006) Short G-rich oligonucleotides as a potential therapeutic for Huntington’s disease. BMC Neurosci 7:65. https://doi.org/10.1186/1471-2202-7-65

    Article  PubMed  PubMed Central  Google Scholar 

  103. Proske D, Gilch S, Wopfner F, Schatzl HM, Winnacker EL, Famulok M (2002) Prion-protein-specifific aptamer reduces PrPSc formation. ChemBioChem 3:717–725. https://doi.org/10.1002/1439-7633(20020802)3:8%3c717::AID-CBIC717%3e3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  104. Rhie A, Park WS, Choi MK, Kim JH, Ryu J, Ryu CH, Jung YS (2015) Genomic copy number variations characterize the prognosis of both P16-positive and P16-negative oropharyngeal squamous cell carcinoma after curative resection. Medicine 94(50):e2187. https://doi.org/10.1097/md.0000000000002187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hossain MT, Shibata T, Kabashima T, Kai M (2010) Aptamer-mediated chemiluminescence detection of prion protein on a membrane using trimethoxyphenylglyoxal. Anal Sci Int J Jpn Soc Anal Chem 26:645e647. https://doi.org/10.2116/analsci.26.645

    Article  Google Scholar 

  106. Miodek A, Poturnayova A, Snejdarkova M, Hianik T, Korri-Youssoufifi H (2013) Binding kinetics of human cellular prion detection by DNA aptamers immobilized on a conducting polypyrrole. Anal Bioanal Chem 405:2505–2514. https://doi.org/10.1007/s00216-012-6665-4

    Article  CAS  PubMed  Google Scholar 

  107. Nastasijevic B, Wright BR, Smestad J, Warrington AE, Rodriguez M, Maher LJ (2012) Remyelination induced by a DNA aptamer in a mouse model of multiple sclerosis. PLoS One 7(6):e39595. https://doi.org/10.1371/journal.pone.0039595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Buysschaert I, Carmeliet P, Dewerchin M (2007) Clinical and fundamental aspects of angiogenesis and ANTI-angiogenesis. Acta Clin Belg 62(3):162–169. https://doi.org/10.1179/acb.2007.027

    Article  CAS  PubMed  Google Scholar 

  109. Xiong Y, Mahmood A, Chopp M (2010) Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs 11:298–308. https://doi.org/10.1016/j.cct.2010.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sosic A, Meneghello A, Antognoli A, Cretaio E, Gatto B (2013) Development of a multiplex Sandwich aptamer microarray for the detection of VEGF165 and thrombin. Sensor 13(10):13425–13438. https://doi.org/10.3390/s131013425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hsiao HY, Chen YC, Huang CH, Chen CC, Hsu YH, Chen HM, Chern Y (2015) Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann Neurol 78(2):178–192. https://doi.org/10.1002/ana.24428

    Article  CAS  PubMed  Google Scholar 

  112. Kopra K, Syrjänpää M, Hänninen P, Härmä H (2014) Non-competitive aptamer-based quenching resonance energy transfer assay for homogeneous growth factor quantification. Analyst 139(8):2016. https://doi.org/10.1039/c3an01814h

    Article  CAS  PubMed  Google Scholar 

  113. Charbgoo F, Soltani F, Taghdisi SM, Abnous K, Ramezani M (2016) Nanoparticles application in high sensitive aptasensor design. TrAC Trend Anal Chem 85:85–97. https://doi.org/10.1016/j.trac.2016.08.008

    Article  CAS  Google Scholar 

  114. Xu H, Kou F, Ye H, Wang Z, Huang S, Liu X, Chen G (2017) Highly sensitive antibody-aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator. Talanta 175:177–182. https://doi.org/10.1016/j.talanta.2017.04.073

    Article  CAS  PubMed  Google Scholar 

  115. Nonaka Y, Yoshida W, Abe K, Ferri S, Schulze H, Bachmann TT, Ikebukuro K (2012) Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system. Anal Chem 85(2):1132–1137. https://doi.org/10.1021/ac303023d

    Article  CAS  PubMed  Google Scholar 

  116. Crulhas BP, Karpik AE, Delella FK, Castro GR, Pedrosa VA (2017) Electrochemical aptamer-based biosensor developed to monitor PSA and VEGF released by prostate cancer cells. Anal Bioanal Chem 409(29):6771–6780. https://doi.org/10.1007/s00216-017-0630-1

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xi, H., Zhang, Y. (2022). Aptamer Detection of Neurodegenerative Disease Biomarkers . In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1712-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1712-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1711-3

  • Online ISBN: 978-1-0716-1712-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics