Skip to main content

MicroRNAs in Blood Serum , Blood Plasma , and Cerebrospinal Fluid as Diagnostic Biomarkers of Alzheimer’s Disease

  • Protocol
  • First Online:
Neurodegenerative Diseases Biomarkers

Part of the book series: Neuromethods ((NM,volume 173))

  • 1397 Accesses

Abstract

MicroRNAs (miRNAs) are a family of small, genome-encoded endogenous RNAs that are transcribed but not translated into proteins. They serve essential roles in virtually every aspect of brain function, including neurogenesis, neural development, and cellular responses leading to changes in synaptic plasticity. They are implicated in neurodegeneration and other neurological disorders. Complex interplay among multiple pathways including excitotoxicity, mitochondrial dysfunction, ionic imbalance, oxidative stress, and inflammation are involved in the mechanism of CNS degenerative disease including Alzheimer’s disease (AD). Circulating miRNAs are largely stable in blood and may serve as diagnostic markers for CNS injury. This chapter presents the findings in human studies using blood serum, blood plasma, and CSF which indicate that individual or combinations of miRNAs can serve as important biomarkers in distinguishing AD and mild cognitive impairment (MCI) patients from controls. Appropriate miRNAs can differentiate between AD and MCI, and between mild and moderate–severe AD, and predict the progression of MCI to AD. They could potentially replace or be combined with the molecular markers of AD currently used in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 109.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 149.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191. https://doi.org/10.1016/j.jalz.2007.04.381

    Article  PubMed  Google Scholar 

  2. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344. https://doi.org/10.1056/NEJMra0909142

    Article  CAS  PubMed  Google Scholar 

  3. The Alzheimer’s Association (2011) 2011 Alzheimer’s disease facts and figures. Alzheimers Dement 7(2):208–244. https://doi.org/10.1016/j.jalz.2011.02.004

    Article  Google Scholar 

  4. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease. Neurology 34(7):939–944. https://doi.org/10.1212/WNL.34.7.939

    Article  CAS  PubMed  Google Scholar 

  5. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269. https://doi.org/10.1016/j.jalz.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hu CJ, Octave JN (2019) Editorial: risk factors and outcome predicating biomarker of neurodegenerative diseases. Front Neurol 10:45. https://doi.org/10.3389/fneur.2019.00045

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bali J, Gheinani AH, Zurbriggen S, Rajendran L (2012) Role of genes linked to sporadic Alzheimer’s disease risk in the production of β-amyloid peptides. Proc Natl Acad Sci U S A 109(38):15307–15311. https://doi.org/10.1073/pnas.1201632109

    Article  PubMed  PubMed Central  Google Scholar 

  8. Piaceri I, Nacmias B, Sorbi S (2013) Genetics of familial and sporadic Alzheimer’s disease. Front Biosci E5:167–177. https://doi.org/10.2741/e605

    Article  CAS  Google Scholar 

  9. Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W (2016) Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 13(9):952–963. https://doi.org/10.2174/1567205013666160314150501

    Article  CAS  PubMed  Google Scholar 

  10. Barber RC (2012) The genetics of Alzheimer’s disease. Scientifica 2012:246210. https://doi.org/10.6064/2012/246210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reddy PH, Tonk S, Kumar S, Vijayan M, Kandimalla R, Kuruva CS, Reddy AP (2017) A critical evaluation of neuroprotective and neurodegenerative microRNAs in Alzheimer’s disease. Biochem Biophys Res Commun 483(4):1156–1165. https://doi.org/10.1016/j.bbrc.2016.08.067

    Article  CAS  PubMed  Google Scholar 

  12. Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, Berg L (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58(3):397–405. https://doi.org/10.1001/archneur.58.3.397

    Article  CAS  PubMed  Google Scholar 

  13. Morris JC, Cummings J (2005) Mild cognitive impairment (MCI) represents early-stage Alzheimer’s disease. J Alzheimers Dis 7(3):235–239. https://doi.org/10.3233/jad-2005-7306

    Article  PubMed  Google Scholar 

  14. Garcia-Ptacek S, Eriksdotter M, Jelic V, Porta-Etessam J, Kåreholt I, Manzano Palomo S (2016) Subjective cognitive impairment: towards early identification of Alzheimer disease. Neurologia 31(8):562–571. https://doi.org/10.1016/j.nrl.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  15. Sewell MC et al (2010) Neuropsychology in the diagnosis and treatment of dementia. In: Fillit HM, Rockwood K, Woodhouse K (eds) Brocklehurst’s textbook of geriatric medicine and gerontology, 7th edn. Elsevier, Amsterdam, pp 402–410

    Chapter  Google Scholar 

  16. Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, Rich K, Kaiser E, Verbeek M, Tsolaki M, Mulugeta E, Rosén E, Aarsland D, Visser PJ, Schröder J, Marcusson J, de Leon M, Hampel H, Scheltens P, Pirttilä T, Wallin A, Jönhagen ME, Minthon L, Winblad B, Blennow K (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302(4):385–393. https://doi.org/10.1001/jama.2009.1064

    Article  CAS  PubMed  Google Scholar 

  17. Vlassenko AG, Benzinger TL, Morris JC (2012) PET amyloid-beta imaging in preclinical Alzheimer’s disease. Biochim Biophys Acta 1822(3):370–379. https://doi.org/10.1016/j.bbadis.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  18. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404. https://doi.org/10.1007/s00401-006-0127-z

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, Klunk WE, Mathis CA, DeKosky ST, Morris JC (2006) [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67(3):446–452. https://doi.org/10.1212/01.wnl.0000228230.26044.a4

    Article  CAS  PubMed  Google Scholar 

  20. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, Szoeke C, Macaulay SL, Martins R, Maruff P, Ames D, Rowe CC, Masters CL (2013) Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12(4):357–367. https://doi.org/10.1016/S1474-4422(13)70044-9

    Article  CAS  PubMed  Google Scholar 

  21. Schneider P, Hampel H, Buerger K (2009) Biological marker candidates of Alzheimer’s disease in blood, plasma, and serum. CNS Neurosci Ther 15(4):358–374. https://doi.org/10.1111/j.1755-5949.2009.00104.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lusardi TA, Phillips JI, Wiedrick JT, Harrington CA, Lind B, Lapidus JA, Quinn JF, Saugstad JA (2017) MicroRNAs in human cerebrospinal fluid as biomarkers for Alzheimer’s disease. J Alzheimers Dis 55(3):1223–1233. https://doi.org/10.3233/JAD-160835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Holzman DM (2011) CSF biomarkers for Alzheimer’s disease: current utility and potential future use. Neurobiol Aging 32(Suppl 1):S4–S9. https://doi.org/10.1016/j.neurobiolaging.2011.09.003

    Article  CAS  Google Scholar 

  24. Fagan AM, Perrin RJ (2012) Upcoming candidate cerebrospinal fluid biomarkers of Alzheimer’s disease. Biomark Med 6(4):455–476. https://doi.org/10.2217/bmm.12.42

    Article  CAS  PubMed  Google Scholar 

  25. Nagaraj S, Laskowska-Kaszub K, Dębski KJ, Wojsiat J, Dąbrowski M, Gabryelewicz T, Kuźnicki J, Wojda U (2017) Profile of 6 microRNA in blood plasma distinguish early stage Alzheimer’s disease patients from non-demented subjects. Oncotarget 8(10):16122–16143. https://doi.org/10.18632/oncotarget.15109

    Article  PubMed  PubMed Central  Google Scholar 

  26. McKeever PM, Schneider R, Taghdiri F, Weichert A, Multani N, Brown RA, Boxer AL, Karydas A, Miller B, Robertson J, Tartaglia MC (2018) MicroRNA expression levels are altered in the cerebrospinal fluid of patients with young-onset Alzheimer’s disease. Mol Neurobiol 55(12):8826–8841. https://doi.org/10.1007/s12035-018-1032-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koran ME, Wagener M, Hohman TJ (2017) Sex differences in the association between AD biomarkers and cognitive decline. Brain Imaging Behav 11(1):205–213. https://doi.org/10.1007/s11682-016-9523-8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Morris JC, Schindler SE, McCue LM, Moulder KL, Benzinger TLS, Cruchaga C, Fagan AM, Grant E, Gordon BA, Holtzman DM, Xiong C (2019) Assessment of racial disparities in biomarkers for Alzheimer disease. JAMA Neurol 76(3):264–273. https://doi.org/10.1001/jamaneurol.2018.4249

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aasebø E, Opsahl JA, Bjørlykke Y, Myhr KM, Kroksveen AC, Berven FS (2014) Effects of blood contamination and the rostro-caudal gradient on the human cerebrospinal fluid proteome. PLoS One 9(3):e90429. https://doi.org/10.1371/journal.pone.0090429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bjerke M, Portelius E, Minthon L, Wallin A, Anckarsäter H, Anckarsäter R, Andreasen N, Zetterberg H, Andreasson U, Blennow K (2010) Confounding factors influencing amyloid Beta concentration in cerebrospinal fluid. Int J Alzheimers Dis 2010:986310. https://doi.org/10.4061/2010/986310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siedlecki-Wullich D, Català-Solsona J, Fábregas C, Hernández I, Clarimon J, Lleó A, Boada M, Saura CA, Rodríguez-Álvarez J, Miñano-Molina AJ (2019) Altered microRNAs related to synaptic function as potential plasma biomarkers for Alzheimer’s disease. Alzheimers Res Ther 11(1):46. https://doi.org/10.1186/s13195-019-0501-4

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wilson A, Sweeney M, Lynch PL, O’Kane MJ (2018) Hemolysis rates in whole blood samples for blood gas/electrolyte analysis by point-of-care testing. J Appl Lab Med 3(1):144–145. https://doi.org/10.1373/jalm.2018.026427

    Article  CAS  PubMed  Google Scholar 

  33. Galasko D (1998) An integrated approach to the management of Alzheimer’s disease: assessing cognition, function and behavior. Eur J Neurol 5(S4):S9–S17. https://doi.org/10.1111/j.1468-1331.1998.tb00444.x

    Article  Google Scholar 

  34. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H (2005) The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4):695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x

    Article  PubMed  Google Scholar 

  35. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259. https://doi.org/10.1007/bf00308809

    Article  CAS  PubMed  Google Scholar 

  36. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840. https://doi.org/10.1038/nature09267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. https://doi.org/10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  38. Peplow PV, Martinez B, Calin GA, Esquela-Kerscher A (eds) (2019) MicroRNAs in diseases and disorders. Royal Society of Chemistry, London. ISSN:2041-3203, ISSN:2041–3211

    Google Scholar 

  39. Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta 1803(11):1231–1243. https://doi.org/10.1016/j.bbamcr.2010.06.013

    Article  CAS  PubMed  Google Scholar 

  40. Ye Y, Xu H, Su X, He X (2016) Role of microRNA in governing synaptic plasticity. Neural Plast 2019:4959523. https://doi.org/10.1155/2016/4959523

    Article  CAS  Google Scholar 

  41. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based biomarkers for cancer detection. Proc Natl Acad Sci U S A 105(30):10513–10518. https://doi.org/10.1073/pnas.0804549105

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stary CM, Bell JD, Cho JE, Giffard RG (2018) Identification of microRNAs as targets for treatment of ischemic stroke. In: Peplow PV, Dambinova SA, Gennarelli TA, Martinez B (eds) Acute brain impairment. Royal Society of Chemistry, London, pp 105–127. ISBN-13: 978-1782629504, ISBN-10: 1782629505

    Google Scholar 

  43. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997–1006. https://doi.org/10.1038/cr.2008.282

    Article  CAS  PubMed  Google Scholar 

  44. Ho AS, Huang X, Cao H, Christman-Skieller C, Bennewith K, Le QT, Koong AC (2010) Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl Oncol 3(2):109–113. https://doi.org/10.1593/tlo.09256

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kim HJ, Park KW, Kim TE, Im JY, Shin HS, Kim S, Lee DH, Ye BS, Kim JH, Kim EJ, Park KH, Han HJ, Jeong JH, Choi SH, Park SA (2015) Elevation of the plasma Aβ40/Aβ42 ratio as a diagnostic marker of sporadic early-onset Alzheimer’s disease. J Alzheimers Dis 48(4):1043–1050. https://doi.org/10.3233/JAD-143018

    Article  CAS  PubMed  Google Scholar 

  46. Mendes-Silva AP, Pereira KS, Tolentino-Araujo GT, Nicolau Ede S, Silva-Ferreira CM, Teixeira AL, Diniz BS (2016) Shared biologic pathways between Alzheimer’s disease and major depression: a systematic review of microRNA expression studies. Am J Geriatr Psychiatry 24(10):903–912. https://doi.org/10.1016/j.jagp.2016.07.017

    Article  PubMed  Google Scholar 

  47. Van Giau V, An SS (2016) Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer’s disease. J Neurol Sci 360:141–152. https://doi.org/10.1016/j.jns.2015.12.005

    Article  CAS  PubMed  Google Scholar 

  48. Wu HZ, Ong KL, Seeher K, Armstrong NJ, Thalamuthu A, Brodaty H, Sachdev P, Mather K (2016) Circulating microRNAs as biomarkers of Alzheimer’s disease: a systematic review. J Alzheimers Dis 49(3):755–766. https://doi.org/10.3233/JAD-150619

    Article  CAS  PubMed  Google Scholar 

  49. Martinez B, Peplow PV (2019) MicroRNAs as diagnostic and therapeutic tools for Alzheimer’s disease: advances and limitations. Neural Regen Res 14(2):242–255. https://doi.org/10.4103/1673-5374.244784

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yang TT, Liu CG, Gao SC, Zhang Y, Wang PC (2018) The serum exosome derived microRNA-135a, −193b, and −384 were potential Alzheimer’s disease biomarkers. Biomed Environ Sci 31(2):87–96. https://doi.org/10.3967/bes2018.011

    Article  PubMed  Google Scholar 

  51. Kumar S, Vijayan M, Reddy PH (2017) MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer’s disease. Hum Mol Genet 26(19):3808–3822. https://doi.org/10.1093/hmg/ddx267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu Y, Xu J, Xu J, Cheng J, Jiao D, Zhou C, Dai Y, Chen Q (2017) Lower serum levels of miR-29c-3p and miR-19b-3p as biomarkers for Alzheimer’s disease. Toihoku J Exp Med 242(2):129–136. https://doi.org/10.1620/tjem.242.129

    Article  CAS  Google Scholar 

  53. Guo R, Fan G, Zhang J, Wu C, Du Y, Ye H, Li Z, Wang L, Zhang Z, Zhang L, Zhao Y, Lu Z (2017) A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease. J Alzheimers Dis 60(4):1365–1377. https://doi.org/10.3233/JAD-170343

    Article  CAS  PubMed  Google Scholar 

  54. Denk J, Oberhauser F, Kornhuber J, Wiltfang J, Fassbender K, Schroeter ML, Volk AE, Diehl-Schmid J, Prudlo J, Danek A, Landwehrmeyer B, Lauer M, Otto M, Jahn H (2018) Specific serum and CSF microRNA profiles distinguish sporadic behavioural variant of frontotemporal dementia compare with Alzheimers patients and cognitively healthy controls. PLoS One 13(5):e0197329. https://doi.org/10.1371/journal.pone.0197329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hara N, Kikuchi M, Miyashita A, Hatsuta H, Saito Y, Kasuga K, Murayama S, Ikeuchi T, Kuwano R (2017) Serum microRNA miR-501-3p as a potential biomarker related to the progression of Alzheimer’s disease. Acta Neuropathol Commun 5(1):10. https://doi.org/10.1186/s40478-017-0414-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jia LH, Liu YN (2016) Downregulated serum miR-223 serves as biomarker in Alzheimer’s disease. Cell Biochem Funct 34(4):233–237. https://doi.org/10.1002/cbf.3184

    Article  CAS  PubMed  Google Scholar 

  57. Zirnheld AL, Shetty V, Chertkow H, Schipper HM, Wang E (2016) Distinguishing mild cognitive impairment from Alzheimer’s disease by increased expression of key circulating microRNAs. Curr Neurobiol 7(2):38–50

    CAS  Google Scholar 

  58. Kayano M, Higaki S, Satoh JI, Matsumoto K, Matsubara E, Takikawa O, Niida S (2016) Plasma microRNA biomarker detection for mild cognitive impairment using differential correlation analysis. Biomark Res 4:22. https://doi.org/10.1186/s40364-016-0076-1

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wiedrick JT, Phillips JI, Lusardi TA, McFarland TJ, Lind B, Sandau US, Harrington CA, Lapidus JA, Galasko DR, Quinn JF, Saugstad JA (2019) Validation of microRNA biomarkers for Alzheimer’s disease in human cerebrospinal fluid. J Alzheimers Dis 67(3):875–891. https://doi.org/10.3233/JAD-180539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jain G, Stuendl A, Rao P, Berulava T, Pena Centeno T, Kaurani L, Burkhardt S, Delalle I, Kornhuber J, Hüll M, Maier W, Peters O, Esselmann H, Schulte C, Deuschle C, Synofzik M, Wiltfang J, Mollenhauer B, Maetzler W, Schneider A, Fischer A (2019) A combined miRNA-piRNA signature to detect Alzheimer’s disease. Transl Psychiatry 9(1):250. https://doi.org/10.1038/s41398-019-0579-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Müller M, Kuiperij HB, Versleijen AA, Chiasserini D, Farotti L, Baschieri F, Parnetti L, Struyfs H, De Roeck N, Luyckx J, Engelborghs S, Claassen JA, Verbeek MM (2016) Validation of microRNAs in cerebrospinal fluid as biomarkers for different forms of dementia in a multicenter study. J Alzheimers Dis 52(4):1321–1333. https://doi.org/10.3233/JAD-160038

    Article  CAS  PubMed  Google Scholar 

  62. Liu Y, He X, Li Y, Wang T (2018) Cerebrospinal fluid CD4+ T lymphocyte-derived miRNA-let-7b can enhances the diagnostic performance of Alzheimer's disease biomarkers. Biochem Biophys Res Commun 495(1):1144–1150. https://doi.org/10.1016/j.bbrc.2017.11.122

    Article  CAS  PubMed  Google Scholar 

  63. Riancho J, Vázquez-Higuera JL, Pozueta A, Lage C, Kazimierczak M, Bravo M, Calero M, Gonalezález A, Rodríguez E, Lleó A, Sánchez-Juan P (2017) MicroRNA profiles in patients with Alzheimer’s disease: analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples. J Alzheimers Dis 57(2):483–491. https://doi.org/10.3233/JAD-161179

    Article  CAS  PubMed  Google Scholar 

  64. Müller M, Jäkel L, Bruinsma IB, Claassen JA, Kuiperij HB, Verbeek MM (2016) MicroRNA-29a is a candidate biomarker for Alzheimer’s disease in cell-free cerebrospinal fluid. Mol Neurobiol 53(5):2894–2899. https://doi.org/10.1007/s12035-015-9156-8

    Article  CAS  PubMed  Google Scholar 

  65. Coughlan G, Laczó J, Hort J, Minihane AM, Hornberger M (2018) Spatial navigation deficits - overlooked cognitive marker for preclinical Alzheimer disease? Nat Rev Neurol 14:496–506

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peplow, P.V., Martinez, B. (2022). MicroRNAs in Blood Serum , Blood Plasma , and Cerebrospinal Fluid as Diagnostic Biomarkers of Alzheimer’s Disease . In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1712-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1712-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1711-3

  • Online ISBN: 978-1-0716-1712-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics