Skip to main content

Biofluid Biomarkers of Amyotrophic Lateral Sclerosis

  • Protocol
  • First Online:
Neurodegenerative Diseases Biomarkers

Part of the book series: Neuromethods ((NM,volume 173))

Abstract

Amyotrophic lateral sclerosis (ALS) is an adult-onset degenerative disease that is characterized by the progressive, irreversible loss of upper and lower motor neurons. It is a highly heterogeneous disease and variability in age of onset, site of onset, rate of disease progression, and survival between individuals present significant challenges for diagnosis and clinical care. Research into understanding the cause for ALS, and the clinical management of the disease is limited in part due to the absence of specific, sensitive biomarkers for the disease. To date, studies aimed at identifying reliable and specific biomarkers for ALS have revealed blood, cerebrospinal fluid (CSF), and urine markers as being useful. Here, we summarize some of the most promising fluid biomarkers identified to date, and discuss their proposed utility for improving our approach to ALS diagnosis, care, and research. Overall, while most studies into biomarkers for ALS explore single-marker utility, accurate profiling of individuals with ALS is likely to require a panel of complementary biomarkers providing insight into multiple aspects of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 109.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 149.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH (2017) Amyotrophic lateral sclerosis. Lancet 390(10107):2084–2098. https://doi.org/10.1016/S0140-6736(17)31287-4

    Article  PubMed  Google Scholar 

  2. Clarke JL, Jackson JH (1867) On a case of muscular atrophy, with disease of the spinal cord and medulla oblongata. Med Chir Trans 50:489–498.481. https://doi.org/10.1177/095952876705000122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hardiman O, van den Berg LH, Kiernan MC (2011) Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 7(11):639–649. https://doi.org/10.1038/nrneurol.2011.153

    Article  CAS  PubMed  Google Scholar 

  4. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955. https://doi.org/10.1016/S0140-6736(10)61156-7

    Article  CAS  PubMed  Google Scholar 

  5. McCombe PA, Wray NR, Henderson RD (2017) Extra-motor abnormalities in amyotrophic lateral sclerosis: another layer of heterogeneity. Expert Rev Neurother 17(6):561–577. https://doi.org/10.1080/14737175.2017.1273772

    Article  CAS  PubMed  Google Scholar 

  6. Ahmed RM, Caga J, Devenney E, Hsieh S, Bartley L, Highton-Williamson E, Ramsey E, Zoing M, Halliday GM, Piguet O, Hodges JR, Kiernan MC (2016) Cognition and eating behavior in amyotrophic lateral sclerosis: effect on survival. J Neurol 263(8):1593–1603. https://doi.org/10.1007/s00415-016-8168-2

    Article  CAS  PubMed  Google Scholar 

  7. Stojkovic T, Stefanova E, Pekmezovic T, Peric S, Stevic Z (2016) Executive dysfunction and survival in patients with amyotrophic lateral sclerosis: preliminary report from a Serbian centre for motor neuron disease. Amyotroph Lateral Scler Frontotemporal Degener 17(7-8):543–547. https://doi.org/10.1080/21678421.2016.1211148

    Article  PubMed  Google Scholar 

  8. Hu WT, Shelnutt M, Wilson A, Yarab N, Kelly C, Grossman M, Libon DJ, Khan J, Lah JJ, Levey AI, Glass J (2013) Behavior matters—cognitive predictors of survival in amyotrophic lateral sclerosis. PLoS One 8(2):e57584. https://doi.org/10.1371/journal.pone.0057584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caga J, Turner MR, Hsieh S, Ahmed RM, Devenney E, Ramsey E, Zoing MC, Mioshi E, Kiernan MC (2016) Apathy is associated with poor prognosis in amyotrophic lateral sclerosis. Eur J Neurol 23(5):891–897. https://doi.org/10.1111/ene.12959

    Article  CAS  PubMed  Google Scholar 

  10. Lo Coco D, Mattaliano P, Spataro R, Mattaliano A, La Bella V (2011) Sleep-wake disturbances in patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 82(8):839–842. https://doi.org/10.1136/jnnp.2010.228007

    Article  PubMed  Google Scholar 

  11. Lo MH, Lin CL, Chuang E, Chuang TY, Kao CH (2017) Association of dementia in patients with benign paroxysmal positional vertigo. Acta Neurol Scand 135(2):197–203. https://doi.org/10.1111/ane.12581

    Article  PubMed  Google Scholar 

  12. Atalaia A, Carvalho MD, Evangelista T, Pinto A (2007) Sleep characteristics of amyotrophic lateral sclerosis in patients with preserved diaphragmatic function. Amyotroph Lateral Scler 8(2):101–105. https://doi.org/10.1080/17482960601029883

    Article  PubMed  Google Scholar 

  13. Gregory R, Mills K, Donaghy M (1993) Progressive sensory nerve dysfunction in amyotrophic lateral sclerosis: a prospective clinical and neurophysiological study. J Neurol 240(5):309–314. https://doi.org/10.1007/BF00838169

    Article  CAS  PubMed  Google Scholar 

  14. Ohashi N, Nonami J, Kodaira M, Yoshida K, Sekijima Y (2020) Taste disorder in facial onset sensory and motor neuronopathy: a case report. BMC Neurol 20(1):71. https://doi.org/10.1186/s12883-020-01639-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Piccione EA, Sletten DM, Staff NP, Low PA (2015) Autonomic system and amyotrophic lateral sclerosis. Muscle Nerve 51(5):676–679. https://doi.org/10.1002/mus.24457

    Article  PubMed  PubMed Central  Google Scholar 

  16. Oey PL, Vos PE, Wieneke GH, Wokke JH, Blankestijn PJ, Karemaker JM (2002) Subtle involvement of the sympathetic nervous system in amyotrophic lateral sclerosis. Muscle Nerve 25(3):402–408. https://doi.org/10.1002/mus.10049

    Article  PubMed  Google Scholar 

  17. Hu F, Jin J, Qu Q, Dang J (2016) Sympathetic skin response in amyotrophic lateral sclerosis. J Clin Neurophysiol 33(1):60–65. https://doi.org/10.1097/wnp.0000000000000226

    Article  PubMed  Google Scholar 

  18. de Carvalho MLL, Motta R, Battaglia MA, Brichetto G (2011) Urinary disorders in amyotrophic lateral sclerosis subjects. Amyotroph Lateral Scler 12(5):352–355. https://doi.org/10.3109/17482968.2011.574141

    Article  Google Scholar 

  19. Nübling GS, Mie E, Bauer RM, Hensler M, Lorenzl S, Hapfelmeier A, Irwin DE, Borasio GD, Winkler AS (2014) Increased prevalence of bladder and intestinal dysfunction in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 15(3-4):174–179. https://doi.org/10.3109/21678421.2013.868001

    Article  PubMed  Google Scholar 

  20. Arlandis S, Vázquez-Costa JF, Martínez-Cuenca E, Sevilla T, Boronat F, Broseta E (2017) Urodynamic findings in amyotrophic lateral sclerosis patients with lower urinary tract symptoms: results from a pilot study. NeurourolUrodyn 36(3):626–631. https://doi.org/10.1002/nau.22976

    Article  Google Scholar 

  21. Toepfer M, Folwaczny C, Lochmüller H, Schroeder M, Riepl RL, Pongratz D, Müller-Felber W (1999) Noninvasive (13)C-octanoic acid breath test shows delayed gastric emptying in patients with amyotrophic lateral sclerosis. Digestion 60(6):567–571. https://doi.org/10.1159/000007708

    Article  CAS  PubMed  Google Scholar 

  22. Toepfer M, Schroeder M, Klauser A, Lochmüller H, Hirschmann M, Riepl RL, Pongratz D, Müller-Felber W (1997) Delayed colonic transit times in amyotrophic lateral sclerosis assessed with radio-opaque markers. Eur J Med Res 2(11):473–476

    CAS  PubMed  Google Scholar 

  23. Xu Z, Alruwaili ARS, Henderson RD, McCombe PA (2017) Screening for cognitive and behavioural impairment in amyotrophic lateral sclerosis: frequency of abnormality and effect on survival. J Neurol Sci 376:16–23. https://doi.org/10.1016/j.jns.2017.02.061

    Article  PubMed  Google Scholar 

  24. Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, Schulz PE (2005) Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65(4):586–590. https://doi.org/10.1212/01.wnl.0000172911.39167.b6

    Article  CAS  PubMed  Google Scholar 

  25. Burrell JR, Kiernan MC, Vucic S, Hodges JR (2011) Motor neuron dysfunction in frontotemporal dementia. Brain 134(Pt 9):2582–2594. https://doi.org/10.1093/brain/awr195

    Article  PubMed  Google Scholar 

  26. Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59(7):1077–1079

    Article  Google Scholar 

  27. Devine MS, Kiernan MC, Heggie S, McCombe PA, Henderson RD (2014) Study of motor asymmetry in ALS indicates an effect of limb dominance on onset and spread of weakness, and an important role for upper motor neurons. Amyotroph Lateral Scler Frontotemporal Degener 15(7-8):481–487. https://doi.org/10.3109/21678421.2014.906617

    Article  PubMed  Google Scholar 

  28. Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K (2013) Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. Nat Rev Neurol 9(12):708–714. https://doi.org/10.1038/nrneurol.2013.221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan RH, Kril JJ, Fatima M, McGeachie A, McCann H, Shepherd C, Forrest SL, Affleck A, Kwok JB, Hodges JR, Kiernan MC, Halliday GM (2015) TDP-43 proteinopathies: pathological identification of brain regions differentiating clinical phenotypes. Brain 138(Pt 10):3110–3122. https://doi.org/10.1093/brain/awv220

    Article  PubMed  Google Scholar 

  30. Ludolph AC, Brettschneider J (2015) TDP-43 in amyotrophic lateral sclerosis—is it a prion disease? Eur J Neurol 22(5):753–761. https://doi.org/10.1111/ene.12706

    Article  CAS  PubMed  Google Scholar 

  31. Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M, Suh E, Van Deerlin VM, Wood EM, Baek Y, Kwong L, Lee EB, Elman L, McCluskey L, Fang L, Feldengut S, Ludolph AC, Lee VM, Braak H, Trojanowski JQ (2013) Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. Ann Neurol 74(1):20–38. https://doi.org/10.1002/ana.23937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chiò A, Logroscino G, Hardiman O, Swingler R, Mitchell D, Beghi E, Traynor BG, Eurals C (2009) Prognostic factors in ALS: a critical review. Amyotroph Lateral Scler 10(5-6):310–323. https://doi.org/10.3109/17482960802566824

    Article  PubMed  PubMed Central  Google Scholar 

  33. de Carvalho M, Swash M, Pinto S (2019) Diaphragmatic neurophysiology and respiratory markers in ALS. Front Neurol 10:143. https://doi.org/10.3389/fneur.2019.00143

    Article  PubMed  PubMed Central  Google Scholar 

  34. McCombe PA, Garton FC, Katz M, Wray NR, Henderson RD (2020) What do we know about the variability in survival of patients with amyotrophic lateral sclerosis? Expert Rev Neurother 20(9):921–941. https://doi.org/10.1080/14737175.2020.1785873

    Article  CAS  PubMed  Google Scholar 

  35. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62. https://doi.org/10.1038/362059a0

    Article  CAS  PubMed  Google Scholar 

  36. Van Deerlin VM, Leverenz JB, Bekris LM, Bird TD, Yuan W, Elman LB, Clay D, Wood EM, Chen-Plotkin AS, Martinez-Lage M, Steinbart E, McCluskey L, Grossman M, Neumann M, Wu IL, Yang W-S, Kalb R, Galasko DR, Montine TJ, Trojanowski JQ, Lee VMY, Schellenberg GD, Yu C-E (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 7(5):409–416. https://doi.org/10.1016/S1474-4422(08)70071-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NCA, Flynn H, Adamson J, Kouri N, Wojtas A, Sengdy P, Hsiung G-YR, Karydas A, Seeley WW, Josephs KA, Coppola G, Geschwind DH, Wszolek ZK, Feldman H, Knopman DS, Petersen RC, Miller BL, Dickson DW, Boylan KB, Graff-Radford NR, Rademakers R (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of <em>C9ORF72</em> causes Chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256. https://doi.org/10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, Abramzon Y, Remes AM, Kaganovich A, Scholz SW, Duckworth J, Ding J, Harmer DW, Hernandez DG, Johnson JO, Mok K, Ryten M, Trabzuni D, Guerreiro RJ, Orrell RW, Neal J, Murray A, Pearson J, Jansen IE, Sondervan D, Seelaar H, Blake D, Young K, Halliwell N, Callister JB, Toulson G, Richardson A, Gerhard A, Snowden J, Mann D, Neary D, Nalls MA, Peuralinna T, Jansson L, Isoviita V-M, Kaivorinne A-L, Hölttä-Vuori M, Ikonen E, Sulkava R, Benatar M, Wuu J, Chiò A, Restagno G, Borghero G, Sabatelli M, Heckerman D, Rogaeva E, Zinman L, Rothstein JD, Sendtner M, Drepper C, Eichler EE, Alkan C, Abdullaev Z, Pack SD, Dutra A, Pak E, Hardy J, Singleton A, Williams NM, Heutink P, Pickering-Brown S, Morris HR, Tienari PJ, Traynor BJ (2011) A Hexanucleotide Repeat Expansion in <em>C9ORF72</em> Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron 72(2):257–268. https://doi.org/10.1016/j.neuron.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crozat A, Aman P, Mandahl N, Ron D (1993) Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363(6430):640–644. https://doi.org/10.1038/363640a0

    Article  CAS  PubMed  Google Scholar 

  40. Gibson SB, Downie JM, Tsetsou S, Feusier JE, Figueroa KP, Bromberg MB, Jorde LB, Pulst SM (2017) The evolving genetic risk for sporadic ALS. Neurology 89(3):226–233. https://doi.org/10.1212/WNL.0000000000004109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hodges J (2012) Familial frontotemporal dementia and amyotrophic lateral sclerosis associated with the C9ORF72 hexanucleotide repeat. Brain 135(Pt 3):652–655. https://doi.org/10.1093/brain/aws033

    Article  PubMed  Google Scholar 

  42. Rosenfeld J, Strong MJ (2015) Challenges in the understanding and treatment of amyotrophic lateral sclerosis/motor neuron disease. Neurotherapeutics 12(2):317–325. https://doi.org/10.1007/s13311-014-0332-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ghasemi M (2016) Amyotrophic lateral sclerosis mimic syndromes. Iran J Neurol 15(2):85–91

    PubMed  PubMed Central  Google Scholar 

  44. Verber NS, Shepheard SR, Sassani M, McDonough HE, Moore SA, Alix JJP, Wilkinson ID, Jenkins TM, Shaw PJ (2019) Biomarkers in motor neuron disease: a state of the art review. Front Neurol 10:291. https://doi.org/10.3389/fneur.2019.00291

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hogden A, Foley G, Henderson RD, James N, Aoun SM (2017) Amyotrophic lateral sclerosis: improving care with a multidisciplinary approach. J Multidiscip Healthc 10:205–215. https://doi.org/10.2147/JMDH.S134992

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tarasiuk J, Kułakowska A, Drozdowski W, Kornhuber J, Lewczuk P (2012) CSF markers in amyotrophic lateral sclerosis. J Neural Transm 119(7):747–757. https://doi.org/10.1007/s00702-012-0806-y

    Article  CAS  PubMed  Google Scholar 

  47. Brancia C, Noli B, Boido M, Boi A, Puddu R, Borghero G, Marrosu F, Bongioanni P, Orru S, Manconi B, D'Amato F, Messana I, Vincenzoni F, Vercelli A, Ferri GL, Cocco C (2016) VGF protein and its C-terminal derived peptides in amyotrophic lateral sclerosis: human and animal model studies. PLoS One 11(10):e0164689. https://doi.org/10.1371/journal.pone.0164689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kakaroubas N, Brennan S, Keon M, Saksena NK (2019) Pathomechanisms of blood-brain barrier disruption in ALS. Neurosci J 2019:2537698–2537698. https://doi.org/10.1155/2019/2537698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sasaki S (2015) Alterations of the blood-spinal cord barrier in sporadic amyotrophic lateral sclerosis. Neuropathology 35(6):518–528. https://doi.org/10.1111/neup.12221

    Article  CAS  PubMed  Google Scholar 

  50. Vijayakumar UG, Milla V, Cynthia Stafford MY, Bjourson AJ, Duddy W, Duguez SM (2019) A systematic review of suggested molecular strata, biomarkers and their tissue sources in ALS. Front Neurol 10:400. https://doi.org/10.3389/fneur.2019.00400

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen X, Chen Y, Wei Q, Ou R, Cao B, Zhao B, Shang HF (2016) Assessment of a multiple biomarker panel for diagnosis of amyotrophic lateral sclerosis. BMC Neurol 16:173. https://doi.org/10.1186/s12883-016-0689-x

    Article  PubMed  PubMed Central  Google Scholar 

  52. McCombe PA, Pfluger C, Singh P, Lim CY, Airey C, Henderson RD (2015) Serial measurements of phosphorylated neurofilament-heavy in the serum of subjects with amyotrophic lateral sclerosis. J Neurol Sci 353(1-2):122–129. https://doi.org/10.1016/j.jns.2015.04.032

    Article  CAS  PubMed  Google Scholar 

  53. Lehnert S, Costa J, de Carvalho M, Kirby J, Kuzma-Kozakiewicz M, Morelli C, Robberecht W, Shaw P, Silani V, Steinacker P, Tumani H, Van Damme P, Ludolph A, Otto M (2014) Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 15(5-6):344–350. https://doi.org/10.3109/21678421.2014.884592

    Article  PubMed  Google Scholar 

  54. Gendron TF, Group CONS, Daughrity LM, Heckman MG, Diehl NN, Wuu J, Miller TM, Pastor P, Trojanowski JQ, Grossman M, Berry JD, Hu WT, Ratti A, Benatar M, Silani V, Glass JD, Floeter MK, Jeromin A, Boylan KB, Petrucelli L (2017) Phosphorylated neurofilament heavy chain: a biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol 82(1):139–146. https://doi.org/10.1002/ana.24980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boylan KB, Glass JD, Crook JE, Yang C, Thomas CS, Desaro P, Johnston A, Overstreet K, Kelly C, Polak M, Shaw G (2013) Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 84(4):467–472. https://doi.org/10.1136/jnnp-2012-303768

    Article  PubMed  Google Scholar 

  56. Oeckl P, Jardel C, Salachas F, Lamari F, Andersen PM, Bowser R, de Carvalho M, Costa J, van Damme P, Gray E, Grosskreutz J, Hernandez-Barral M, Herukka SK, Huss A, Jeromin A, Kirby J, Kuzma-Kozakiewicz M, Amador Mdel M, Mora JS, Morelli C, Muckova P, Petri S, Poesen K, Rhode H, Rikardsson AK, Robberecht W, Rodriguez Mahillo AI, Shaw P, Silani V, Steinacker P, Turner MR, Tuzun E, Yetimler B, Ludolph AC, Otto M (2016) Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS. Amyotroph Lateral Scler Frontotemporal Degener 17(5–6):404–413. https://doi.org/10.3109/21678421.2016.1167913

    Article  CAS  PubMed  Google Scholar 

  57. Menke RA, Gray E, Lu CH, Kuhle J, Talbot K, Malaspina A, Turner MR (2015) CSF neurofilament light chain reflects corticospinal tract degeneration in ALS. Ann Clin Transl Neurol 2(7):748–755. https://doi.org/10.1002/acn3.212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tortelli R, Copetti M, Ruggieri M, Cortese R, Capozzo R, Leo A, D'Errico E, Mastrapasqua M, Zoccolella S, Pellegrini F, Simone IL, Logroscino G (2015) Cerebrospinal fluid neurofilament light chain levels: marker of progression to generalized amyotrophic lateral sclerosis. Eur J Neurol 22(1):215–218. https://doi.org/10.1111/ene.12421

    Article  CAS  PubMed  Google Scholar 

  59. Tortelli R, Ruggieri M, Cortese R, D'Errico E, Capozzo R, Leo A, Mastrapasqua M, Zoccolella S, Leante R, Livrea P, Logroscino G, Simone IL (2012) Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol 19(12):1561–1567. https://doi.org/10.1111/j.1468-1331.2012.03777.x

    Article  CAS  PubMed  Google Scholar 

  60. Lu CH, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren N, Giovannoni G, Fratta P, Sidle K, Fish M, Orrell R, Howard R, Talbot K, Greensmith L, Kuhle J, Turner MR, Malaspina A (2015) Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis. Neurology 84(22):2247–2257. https://doi.org/10.1212/WNL.0000000000001642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gaiottino J, Norgren N, Dobson R, Topping J, Nissim A, Malaspina A, Bestwick JP, Monsch AU, Regeniter A, Lindberg RL, Kappos L, Leppert D, Petzold A, Giovannoni G, Kuhle J (2013) Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One 8(9):e75091. https://doi.org/10.1371/journal.pone.0075091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zetterberg H, Jacobsson J, Rosengren L, Blennow K, Andersen PM (2007) Cerebrospinal fluid neurofilament light levels in amyotrophic lateral sclerosis: impact of SOD1 genotype. Eur J Neurol 14(12):1329–1333. https://doi.org/10.1111/j.1468-1331.2007.01972.x

    Article  CAS  PubMed  Google Scholar 

  63. De Schaepdryver M, Jeromin A, Gille B, Claeys KG, Herbst V, Brix B, Van Damme P, Poesen K (2018) Comparison of elevated phosphorylated neurofilament heavy chains in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 89(4):367–373. https://doi.org/10.1136/jnnp-2017-316605

    Article  PubMed  Google Scholar 

  64. Kuhle J, Regeniter A, Leppert D, Mehling M, Kappos L, Lindberg RL, Petzold A (2010) A highly sensitive electrochemiluminescence immunoassay for the neurofilament heavy chain protein. J Neuroimmunol 220(1–2):114–119. https://doi.org/10.1016/j.jneuroim.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  65. Brettschneider J, Petzold A, Sussmuth SD, Ludolph AC, Tumani H (2006) Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 66(6):852–856. https://doi.org/10.1212/01.wnl.0000203120.85850.54

    Article  CAS  PubMed  Google Scholar 

  66. Reijn TS, Abdo WF, Schelhaas HJ, Verbeek MM (2009) CSF neurofilament protein analysis in the differential diagnosis of ALS. J Neurol 256(4):615–619. https://doi.org/10.1007/s00415-009-0131-z

    Article  CAS  PubMed  Google Scholar 

  67. Li DW, Ren H, Jeromin A, Liu M, Shen D, Tai H, Ding Q, Li X, Cui L (2018) Diagnostic performance of neurofilaments in chinese patients with amyotrophic lateral sclerosis: a prospective study. Front Neurol 9:726. https://doi.org/10.3389/fneur.2018.00726

    Article  PubMed  PubMed Central  Google Scholar 

  68. Feneberg E, Oeckl P, Steinacker P, Verde F, Barro C, Van Damme P, Gray E, Grosskreutz J, Jardel C, Kuhle J, Koerner S, Lamari F, Amador MDM, Mayer B, Morelli C, Muckova P, Petri S, Poesen K, Raaphorst J, Salachas F, Silani V, Stubendorff B, Turner MR, Verbeek MM, Weishaupt JH, Weydt P, Ludolph AC, Otto M (2018) Multicenter evaluation of neurofilaments in early symptom onset amyotrophic lateral sclerosis. Neurology 90(1):e22–e30. https://doi.org/10.1212/WNL.0000000000004761

    Article  CAS  PubMed  Google Scholar 

  69. Steinacker P, Feneberg E, Weishaupt J, Brettschneider J, Tumani H, Andersen PM, von Arnim CA, Bohm S, Kassubek J, Kubisch C, Lule D, Muller HP, Muche R, Pinkhardt E, Oeckl P, Rosenbohm A, Anderl-Straub S, Volk AE, Weydt P, Ludolph AC, Otto M (2016) Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients. J Neurol Neurosurg Psychiatry 87(1):12–20. https://doi.org/10.1136/jnnp-2015-311387

    Article  PubMed  Google Scholar 

  70. Poesen K, De Schaepdryver M, Stubendorff B, Gille B, Muckova P, Wendler S, Prell T, Ringer TM, Rhode H, Stevens O, Claeys KG, Couwelier G, D'Hondt A, Lamaire N, Tilkin P, Van Reijen D, Gourmaud S, Fedtke N, Heiling B, Rumpel M, Rodiger A, Gunkel A, Witte OW, Paquet C, Vandenberghe R, Grosskreutz J, Van Damme P (2017) Neurofilament markers for ALS correlate with extent of upper and lower motor neuron disease. Neurology 88(24):2302–2309. https://doi.org/10.1212/WNL.0000000000004029

    Article  CAS  PubMed  Google Scholar 

  71. Boylan K, Yang C, Crook J, Overstreet K, Heckman M, Wang Y, Borchelt D, Shaw G (2009) Immunoreactivity of the phosphorylated axonal neurofilament H subunit (pNF-H) in blood of ALS model rodents and ALS patients: evaluation of blood pNF-H as a potential ALS biomarker. J Neurochem 111(5):1182–1191. https://doi.org/10.1111/j.1471-4159.2009.06386.x

    Article  CAS  PubMed  Google Scholar 

  72. Weydt P, Oeckl P, Huss A, Muller K, Volk AE, Kuhle J, Knehr A, Andersen PM, Prudlo J, Steinacker P, Weishaupt JH, Ludolph AC, Otto M (2016) Neurofilament levels as biomarkers in asymptomatic and symptomatic familial amyotrophic lateral sclerosis. Ann Neurol 79(1):152–158. https://doi.org/10.1002/ana.24552

    Article  CAS  PubMed  Google Scholar 

  73. De Schaepdryver M, Goossens J, De Meyer S, Jeromin A, Masrori P, Brix B, Claeys KG, Schaeverbeke J, Adamczuk K, Vandenberghe R, Van Damme P, Poesen K (2019) Serum neurofilament heavy chains as early marker of motor neuron degeneration. Ann Clin Transl Neurol 6(10):1971–1979. https://doi.org/10.1002/acn3.50890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Benatar M, Wuu J, Lombardi V, Jeromin A, Bowser R, Andersen PM, Malaspina A (2019) Neurofilaments in pre-symptomatic ALS and the impact of genotype. Amyotroph Lateral Scler Frontotemporal Degener 20(7–8):538–548. https://doi.org/10.1080/21678421.2019.1646769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gagliardi D, Meneri M, Saccomanno D, Bresolin N, Comi GP, Corti S (2019) Diagnostic and prognostic role of blood and cerebrospinal fluid and blood neurofilaments in amyotrophic lateral sclerosis: a review of the literature. Int J Mol Sci 20(17):4152. https://doi.org/10.3390/ijms20174152

    Article  CAS  PubMed Central  Google Scholar 

  76. Verde F, Steinacker P, Weishaupt JH, Kassubek J, Oeckl P, Halbgebauer S, Tumani H, von Arnim CAF, Dorst J, Feneberg E, Mayer B, Müller H-P, Gorges M, Rosenbohm A, Volk AE, Silani V, Ludolph AC, Otto M (2019) Neurofilament light chain in serum for the diagnosis of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 90(2):157. https://doi.org/10.1136/jnnp-2018-318704

    Article  PubMed  Google Scholar 

  77. Xu Z, Henderson RD, David M, McCombe PA (2016) Neurofilaments as biomarkers for amyotrophic lateral sclerosis: a systematic review and meta-analysis. PLoS One 11(10):e0164625. https://doi.org/10.1371/journal.pone.0164625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Poesen K, Van Damme P (2019) Diagnostic and prognostic performance of neurofilaments in ALS. Front Neurol 9:1167–1167. https://doi.org/10.3389/fneur.2018.01167

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li S, Ren Y, Zhu W, Yang F, Zhang X, Huang X (2016) Phosphorylated neurofilament heavy chain levels in paired plasma and CSF of amyotrophic lateral sclerosis. J Neurol Sci 367:269–274. https://doi.org/10.1016/j.jns.2016.05.062

    Article  CAS  PubMed  Google Scholar 

  80. Huh JW, Laurer HL, Raghupathi R, Helfaer MA, Saatman KE (2002) Rapid loss and partial recovery of neurofilament immunostaining following focal brain injury in mice. Exp Neurol 175(1):198–208. https://doi.org/10.1006/exnr.2002.7880

    Article  CAS  PubMed  Google Scholar 

  81. Galvin JE, Nakamura M, McIntosh TK, Saatman KE, Sampathu D, Raghupathi R, Lee VM, Trojanowski JQ (2000) Neurofilament-rich intraneuronal inclusions exacerbate neurodegenerative sequelae of brain trauma in NFH/LacZ transgenic mice. Exp Neurol 165(1):77–89. https://doi.org/10.1006/exnr.2000.7461

    Article  CAS  PubMed  Google Scholar 

  82. Gotow T (2000) Neurofilaments in health and disease. Med Electron Microsc 33(4):173–199. https://doi.org/10.1007/s007950000019

    Article  CAS  PubMed  Google Scholar 

  83. Petzold A, Keir G, Green AJ, Giovannoni G, Thompson EJ (2003) A specific ELISA for measuring neurofilament heavy chain phosphoforms. J Immunol Methods 278(1-2):179–190. https://doi.org/10.1016/s0022-1759(03)00189-3

    Article  CAS  PubMed  Google Scholar 

  84. Petzold A, Shaw G (2007) Comparison of two ELISA methods for measuring levels of the phosphorylated neurofilament heavy chain. J Immunol Methods 319(1-2):34–40. https://doi.org/10.1016/j.jim.2006.09.021

    Article  CAS  PubMed  Google Scholar 

  85. Shaw G, Yang C, Ellis R, Anderson K, Parker Mickle J, Scheff S, Pike B, Anderson DK, Howland DR (2005) Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Biochem Biophys Res Commun 336(4):1268–1277. https://doi.org/10.1016/j.bbrc.2005.08.252

    Article  CAS  PubMed  Google Scholar 

  86. Koel-Simmelink MJ, Vennegoor A, Killestein J, Blankenstein MA, Norgren N, Korth C, Teunissen CE (2014) The impact of pre-analytical variables on the stability of neurofilament proteins in CSF, determined by a novel validated SinglePlex Luminex assay and ELISA. J Immunol Methods 402(1-2):43–49. https://doi.org/10.1016/j.jim.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  87. Benatar M, Wuu J, Andersen PM, Lombardi V, Malaspina A (2018) Neurofilament light: a candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion. Ann Neurol 84(1):130–139. https://doi.org/10.1002/ana.25276

    Article  CAS  PubMed  Google Scholar 

  88. Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius A, Liman V, Norgren N, Blennow K, Zetterberg H (2016) Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med 54(10):1655–1661. https://doi.org/10.1515/cclm-2015-1195

    Article  CAS  PubMed  Google Scholar 

  89. Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, Barro C, Kappos L, Comabella M, Fazekas F, Petzold A, Blennow K, Zetterberg H, Kuhle J (2018) Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 14(10):577–589. https://doi.org/10.1038/s41582-018-0058-z

    Article  CAS  PubMed  Google Scholar 

  90. Benatar M, Zhang L, Wang L, Granit V, Statland J, Barohn R, Swenson A, Ravits J, Jackson C, Burns TM, Trivedi J, Pioro EP, Caress J, Katz J, McCauley JL, Rademakers R, Malaspina A, Ostrow LW, Wuu J (2020) Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology 95(1):e59–e69. https://doi.org/10.1212/WNL.0000000000009559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405. https://doi.org/10.1016/s1474-4422(15)70016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hampel H, Caraci F, Cuello AC, Caruso G, Nisticò R, Corbo M, Baldacci F, Toschi N, Garaci F, Chiesa PA, Verdooner SR, Akman-Anderson L, Hernández F, Ávila J, Emanuele E, Valenzuela PL, Lucía A, Watling M, Imbimbo BP, Vergallo A, Lista S (2020) A path toward precision medicine for neuroinflammatory mechanisms in Alzheimer’s disease. Front Immunol 11:456. https://doi.org/10.3389/fimmu.2020.00456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rocha NP, de Miranda AS, Teixeira AL (2015) Insights into neuroinflammation in Parkinson’s disease: from biomarkers to anti-inflammatory based therapies. Biomed Res Int 2015:628192. https://doi.org/10.1155/2015/628192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. He R, Yan X, Guo J, Xu Q, Tang B, Sun Q (2018) Recent advances in biomarkers for Parkinson’s disease. Front Aging Neurosci 10:305. https://doi.org/10.3389/fnagi.2018.00305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Harris VK, Tuddenham JF, Sadiq SA (2017) Biomarkers of multiple sclerosis: current findings. Degener Neurol Neuromuscul Dis 7:19–29. https://doi.org/10.2147/dnnd.S98936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Harris VK, Sadiq SA (2009) Disease biomarkers in multiple sclerosis: potential for use in therapeutic decision making. Mol Diagn Ther 13(4):225–244. https://doi.org/10.1007/bf03256329

    Article  CAS  PubMed  Google Scholar 

  97. Hensley K, Abdel-Moaty H, Hunter J, Mhatre M, Mou S, Nguyen K, Potapova T, Pye QN, Qi M, Rice H, Stewart C, Stroukoff K, West M (2006) Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation. J Neuroinflammation 3:2. https://doi.org/10.1186/1742-2094-3-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Qian K, Huang H, Peterson A, Hu B, Maragakis NJ, Ming GL, Chen H, Zhang SC (2017) Sporadic ALS astrocytes induce neuronal degeneration in vivo. Stem Cell Rep 8(4):843–855. https://doi.org/10.1016/j.stemcr.2017.03.003

    Article  CAS  Google Scholar 

  99. Zondler L, Müller K, Khalaji S, Bliederhäuser C, Ruf WP, Grozdanov V, Thiemann M, Fundel-Clemes K, Freischmidt A, Holzmann K, Strobel B, Weydt P, Witting A, Thal DR, Helferich AM, Hengerer B, Gottschalk KE, Hill O, Kluge M, Ludolph AC, Danzer KM, Weishaupt JH (2016) Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol 132(3):391–411. https://doi.org/10.1007/s00401-016-1548-y

    Article  CAS  PubMed  Google Scholar 

  100. Ranganathan S, Williams E, Ganchev P, Gopalakrishnan V, Lacomis D, Urbinelli L, Newhall K, Cudkowicz ME, Brown RH Jr, Bowser R (2005) Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J Neurochem 95(5):1461–1471. https://doi.org/10.1111/j.1471-4159.2005.03478.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pasinetti GM, Ungar LH, Lange DJ, Yemul S, Deng H, Yuan X, Brown RH, Cudkowicz ME, Newhall K, Peskind E, Marcus S, Ho L (2006) Identification of potential CSF biomarkers in ALS. Neurology 66(8):1218–1222. https://doi.org/10.1212/01.wnl.0000203129.82104.07

    Article  CAS  PubMed  Google Scholar 

  102. Ranganathan S, Nicholl GCB, Henry S, Lutka F, Sathanoori R, Lacomis D, Bowser R (2007) Comparative proteomic profiling of cerebrospinal fluid between living and post mortem ALS and control subjects. Amyotroph Lateral Scler 8(6):373–379. https://doi.org/10.1080/17482960701549681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brettschneider J, Mogel H, Lehmensiek V, Ahlert T, Süssmuth S, Ludolph AC, Tumani H (2008) Proteome analysis of cerebrospinal fluid in amyotrophic lateral sclerosis (ALS). Neurochem Res 33(11):2358–2363. https://doi.org/10.1007/s11064-008-9742-5

    Article  CAS  PubMed  Google Scholar 

  104. Brettschneider J, Lehmensiek V, Mogel H, Pfeifle M, Dorst J, Hendrich C, Ludolph AC, Tumani H (2010) Proteome analysis reveals candidate markers of disease progression in amyotrophic lateral sclerosis (ALS). Neurosci Lett 468(1):23–27. https://doi.org/10.1016/j.neulet.2009.10.053

    Article  CAS  PubMed  Google Scholar 

  105. Ryberg H, An J, Darko S, Lustgarten JL, Jaffa M, Gopalakrishnan V, Lacomis D, Cudkowicz M, Bowser R (2010) Discovery and verification of amyotrophic lateral sclerosis biomarkers by proteomics. Muscle Nerve 42(1):104–111. https://doi.org/10.1002/mus.21683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mendonça DMF, Pizzati L, Mostacada K, de Martins SC, Higashi R, Sá LA, Neto VM, Chimelli L, Martinez AMB (2012) Neuroproteomics: an insight into ALS. Neurol Res 34(10):937–943. https://doi.org/10.1179/1743132812Y.0000000092

    Article  CAS  PubMed  Google Scholar 

  107. von Neuhoff N, Oumeraci T, Wolf T, Kollewe K, Bewerunge P, Neumann B, Brors B, Bufler J, Wurster U, Schlegelberger B, Dengler R, Zapatka M, Petri S (2012) Monitoring CSF proteome alterations in amyotrophic lateral sclerosis: obstacles and perspectives in translating a novel marker panel to the clinic. PLoS One 7(9):e44401. https://doi.org/10.1371/journal.pone.0044401

    Article  CAS  Google Scholar 

  108. Varghese AM, Sharma A, Mishra P, Vijayalakshmi K, Harsha HC, Sathyaprabha TN, Bharath SM, Nalini A, Alladi PA, Raju TR (2013) Chitotriosidase—a putative biomarker for sporadic amyotrophic lateral sclerosis. Clin Proteomics 10(1):19. https://doi.org/10.1186/1559-0275-10-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Collins MA, An J, Hood BL, Conrads TP, Bowser RP (2015) Label-free LC-MS/MS proteomic analysis of cerebrospinal fluid identifies protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis. J Proteome Res 14(11):4486–4501. https://doi.org/10.1021/acs.jproteome.5b00804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen Y, Liu XH, Wu JJ, Ren HM, Wang J, Ding ZT, Jiang YP (2016) Proteomic analysis of cerebrospinal fluid in amyotrophic lateral sclerosis. Exp Ther Med 11(6):2095–2106. https://doi.org/10.3892/etm.2016.3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Barschke P, Oeckl P, Steinacker P, Ludolph A, Otto M (2017) Proteomic studies in the discovery of cerebrospinal fluid biomarkers for amyotrophic lateral sclerosis. Expert Rev Proteomics 14(9):769–777. https://doi.org/10.1080/14789450.2017.1365602

    Article  CAS  PubMed  Google Scholar 

  112. Chen Y, Xia K, Chen L, Fan D (2019) Increased Interleukin-6 levels in the astrocyte-derived exosomes of sporadic amyotrophic lateral sclerosis patients. Front Neurosci 13:574. https://doi.org/10.3389/fnins.2019.00574

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ngo ST, Steyn FJ, Huang L, Mantovani S, Pfluger CMM, Woodruff TM, O'Sullivan JD, Henderson RD, McCombe PA (2015) Altered expression of metabolic proteins and adipokines in patients with amyotrophic lateral sclerosis. J Neurol Sci 357(1):22–27. https://doi.org/10.1016/j.jns.2015.06.053

    Article  CAS  PubMed  Google Scholar 

  114. Moreau C, Devos D, Brunaud-Danel V, Defebvre L, Perez T, Destée A, Tonnel AB, Lassalle P, Just N (2005) Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology 65(12):1958–1960. https://doi.org/10.1212/01.wnl.0000188907.97339.76

    Article  CAS  PubMed  Google Scholar 

  115. Gonzalez-Garza MT, Martinez HR, Cruz-Vega DE, Hernandez-Torre M, Moreno-Cuevas JE (2018) Adipsin, MIP-1b, and IL-8 as CSF biomarker panels for ALS diagnosis. Dis Markers 2018:3023826. https://doi.org/10.1155/2018/3023826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cereda C, Baiocchi C, Bongioanni P, Cova E, Guareschi S, Metelli MR, Rossi B, Sbalsi I, Cuccia MC, Ceroni M (2008) TNF and sTNFR1/2 plasma levels in ALS patients. J Neuroimmunol 194(1):123–131. https://doi.org/10.1016/j.jneuroim.2007.10.028

    Article  CAS  PubMed  Google Scholar 

  117. Petrozziello T, Mills AN, Farhan SMK, Mueller KA, Granucci EJ, Glajch KE, Chan J, Chew S, Berry JD, Sadri-Vakili G (2020) Lipocalin-2 is increased in amyotrophic lateral sclerosis. Muscle Nerve 62(2):272–283. https://doi.org/10.1002/mus.26911

    Article  CAS  PubMed  Google Scholar 

  118. Wang HA, Lee JD, Lee KM, Woodruff TM, Noakes PG (2017) Complement C5a-C5aR1 signalling drives skeletal muscle macrophage recruitment in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Skelet Muscle 7(1):10. https://doi.org/10.1186/s13395-017-0128-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tsuboi Y, Yamada T (1994) Increased concentration of C4d complement protein in CSF in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 57(7):859–861. https://doi.org/10.1136/jnnp.57.7.859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Goldknopf IL, Sheta EA, Bryson J, Folsom B, Wilson C, Duty J, Yen AA, Appel SH (2006) Complement C3c and related protein biomarkers in amyotrophic lateral sclerosis and Parkinson’s disease. Biochem Biophys Res Commun 342(4):1034–1039. https://doi.org/10.1016/j.bbrc.2006.02.051

    Article  CAS  PubMed  Google Scholar 

  121. Pagliardini V, Pagliardini S, Corrado L, Lucenti A, Panigati L, Bersano E, Servo S, Cantello R, D'Alfonso S, Mazzini L (2015) Chitotriosidase and lysosomal enzymes as potential biomarkers of disease progression in amyotrophic lateral sclerosis: a survey clinic-based study. J Neurol Sci 348(1):245–250. https://doi.org/10.1016/j.jns.2014.12.016

    Article  CAS  PubMed  Google Scholar 

  122. Steinacker P, Verde F, Fang L, Feneberg E, Oeckl P, Roeber S, Anderl-Straub S, Danek A, Diehl-Schmid J, Fassbender K, Fliessbach K, Foerstl H, Giese A, Jahn H, Kassubek J, Kornhuber J, Landwehrmeyer GB, Lauer M, Pinkhardt EH, Prudlo J, Rosenbohm A, Schneider A, Schroeter ML, Tumani H, von Arnim CAF, Weishaupt J, Weydt P, Ludolph AC, Yilmazer Hanke D, Otto M (2018) Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression. J Neurol Neurosurg Psychiatry 89(3):239–247. https://doi.org/10.1136/jnnp-2017-317138

    Article  PubMed  Google Scholar 

  123. Thompson AG, Gray E, Thézénas ML, Charles PD, Evetts S, Hu MT, Talbot K, Fischer R, Kessler BM, Turner MR (2018) Cerebrospinal fluid macrophage biomarkers in amyotrophic lateral sclerosis. Ann Neurol 83(2):258–268. https://doi.org/10.1002/ana.25143

    Article  CAS  PubMed  Google Scholar 

  124. Vu L, An J, Kovalik T, Gendron T, Petrucelli L, Bowser R (2020) Cross-sectional and longitudinal measures of chitinase proteins in amyotrophic lateral sclerosis and expression of CHI3L1 in activated astrocytes. J Neurol Neurosurg Psychiatry 91(4):350–358. https://doi.org/10.1136/jnnp-2019-321916

    Article  PubMed  Google Scholar 

  125. De Schaepdryver M, Lunetta C, Tarlarini C, Mosca L, Chio A, Van Damme P, Poesen K (2020) Neurofilament light chain and C reactive protein explored as predictors of survival in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 91(4):436. https://doi.org/10.1136/jnnp-2019-322309

    Article  PubMed  Google Scholar 

  126. Keizman D, Rogowski O, Berliner S, Ish-Shalom M, Maimon N, Nefussy B, Artamonov I, Drory VE (2009) Low-grade systemic inflammation in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 119(6):383–389. https://doi.org/10.1111/j.1600-0404.2008.01112.x

    Article  CAS  PubMed  Google Scholar 

  127. Lunetta C, Lizio A, Maestri E, Sansone VA, Mora G, Miller RG, Appel SH, Chio A (2017) Serum C-reactive protein as a prognostic biomarker in amyotrophic lateral sclerosis. JAMA Neurol 74(6):660–667. https://doi.org/10.1001/jamaneurol.2016.6179

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sanjak M, Bravver EK, Bockenek W, Williamson T, Lindblom SS, Dawson W, Johnson M, Lucas N, Lary C, Ranzinger L, Newell-Sturdivant A, Brandon N, Holsten S, Ward A, Hillberry R, Wright K, Rozario N, Brooks B (2018) C-reactive protein ( CRP ) is significantly higher in amyotrophic lateral sclerosis (ALS) patients on non-invasive ventilation (NIV) and tracheostomy-invasive ventilation (TIV) compared with ALS patients at intake clinic evaluation and decreases following Riluzole administration—is CRP potentially a biomarker for treatment responsiveness? Neurology 90(15 Supplement):P4.447

    Google Scholar 

  129. Miller RG, Block G, Katz JS, Barohn RJ, Gopalakrishnan V, Cudkowicz M, Zhang JR, McGrath MS, Ludington E, Appel SH, Azhir A (2015) Randomized phase 2 trial of NP001-a novel immune regulator: safety and early efficacy in ALS. Neurol Neuroimmunol Neuroinflamm 2(3):e100. https://doi.org/10.1212/nxi.0000000000000100

    Article  PubMed  PubMed Central  Google Scholar 

  130. Vucic S, Ryder J, Mekhael L, Rd H, Mathers S, Needham M, Dw S, Mc K (2020) Phase 2 randomized placebo controlled double blind study to assess the efficacy and safety of tecfidera in patients with amyotrophic lateral sclerosis (TEALS Study): study protocol clinical trial (SPIRIT Compliant). Medicine (Baltimore) 99(6):e18904. https://doi.org/10.1097/md.0000000000018904

    Article  Google Scholar 

  131. Kim S, Kim JK, Son MJ, Kim D, Song B, Son I, Kang HW, Lee J, Kim S (2018) Mecasin treatment in patients with amyotrophic lateral sclerosis: study protocol for a randomized controlled trial. Trials 19(1):225. https://doi.org/10.1186/s13063-018-2557-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Implicit B (2021) IC14 for treatment of amyotrophic lateral sclerosis. https://ClinicalTrials.gov/show/NCT03508453

  133. Kanneganti M, Kamba A, Mizoguchi E (2012) Role of chitotriosidase (chitinase 1) under normal and disease conditions. J Epithel Biol Pharmacol 5:1–9. https://doi.org/10.2174/1875044301205010001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res (Indore) 4(3):411–427

    CAS  Google Scholar 

  135. Kzhyshkowska J, Gratchev A, Goerdt S (2007) Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomark Insights 2:128–146

    Article  Google Scholar 

  136. Lewis C-A, Manning J, Rossi F, Krieger C (2012) The neuroinflammatory response in ALS: the roles of microglia and T cells. Neurol Res Int 2012:803701. https://doi.org/10.1155/2012/803701

    Article  PubMed  PubMed Central  Google Scholar 

  137. Bigg HF, Wait R, Rowan AD, Cawston TE (2006) The mammalian chitinase-like lectin, YKL-40, binds specifically to type I collagen and modulates the rate of type I collagen fibril formation. J Biol Chem 281(30):21082–21095. https://doi.org/10.1074/jbc.M601153200

    Article  CAS  PubMed  Google Scholar 

  138. Sun YJ, Chang NC, Hung SI, Chang AC, Chou CC, Hsiao CD (2001) The crystal structure of a novel mammalian lectin, Ym1, suggests a saccharide binding site. J Biol Chem 276(20):17507–17514. https://doi.org/10.1074/jbc.M010416200

    Article  CAS  PubMed  Google Scholar 

  139. Chang NC, Hung SI, Hwa KY, Kato I, Chen JE, Liu CH, Chang AC (2001) A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. J Biol Chem 276(20):17497–17506. https://doi.org/10.1074/jbc.M010417200

    Article  CAS  PubMed  Google Scholar 

  140. Wong CO, Venkatachalam K (2019) Motor neurons from ALS patients with mutations in C9ORF72 and SOD1 exhibit distinct transcriptional landscapes. Hum Mol Genet 28(16):2799–2810. https://doi.org/10.1093/hmg/ddz104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Forostyak S, Homola A, Turnovcova K, Svitil P, Jendelova P, Sykova E (2014) Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells 32(12):3163–3172. https://doi.org/10.1002/stem.1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Petrou P, Gothelf Y, Argov Z, Gotkine M, Levy YS, Kassis I, Vaknin-Dembinsky A, Ben-Hur T, Offen D, Abramsky O, Melamed E, Karussis D (2016) Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol 73(3):337–344. https://doi.org/10.1001/jamaneurol.2015.4321

    Article  PubMed  Google Scholar 

  143. Goyal NA, Berry JD, Windebank A, Staff NP, Maragakis NJ, van den Berg LH, Genge A, Miller R, Baloh RH, Kern R, Gothelf Y, Lebovits C, Cudkowicz M (2020) Addressing heterogeneity in amyotrophic lateral sclerosis clinical trials. Muscle Nerve 62(2):156–166. https://doi.org/10.1002/mus.26801

    Article  PubMed  PubMed Central  Google Scholar 

  144. Chio A, Hammond ER, Mora G, Bonito V, Filippini G (2015) Development and evaluation of a clinical staging system for amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 86(1):38–44. https://doi.org/10.1136/jnnp-2013-306589

    Article  PubMed  Google Scholar 

  145. Weydt P, Yuen EC, Ransom BR, Möller T (2004) Increased cytotoxic potential of microglia from ALS-transgenic mice. Glia 48(2):179–182. https://doi.org/10.1002/glia.20062

    Article  PubMed  Google Scholar 

  146. Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, Siklos L, McKercher SR, Appel SH (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci 103(43):16021. https://doi.org/10.1073/pnas.0607423103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312(5778):1389. https://doi.org/10.1126/science.1123511

    Article  CAS  PubMed  Google Scholar 

  148. Olesen MN, Wuolikainen A, Nilsson AC, Wirenfeldt M, Forsberg K, Madsen JS, Lillevang ST, Brandslund I, Andersen PM, Asgari N (2020) Inflammatory profiles relate to survival in subtypes of amyotrophic lateral sclerosis. Neurol Neuroimmunol Neuroinflamm 7(3):e697. https://doi.org/10.1212/NXI.0000000000000697

    Article  PubMed  PubMed Central  Google Scholar 

  149. Mishra P-S, Vijayalakshmi K, Nalini A, Sathyaprabha TN, Kramer BW, Alladi PA, Raju TR (2017) Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia. J Neuroinflammation 14(1):251. https://doi.org/10.1186/s12974-017-1028-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mishra PS, Boutej H, Soucy G, Bareil C, Kumar S, Picher-Martel V, Dupré N, Kriz J, Julien J-P (2020) Transmission of ALS pathogenesis by the cerebrospinal fluid. Acta Neuropathol Commun 8(1):65–65. https://doi.org/10.1186/s40478-020-00943-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bonneh-Barkay D, Wang G, Starkey A, Hamilton RL, Wiley CA (2010) In vivo CHI3L1 (YKL-40) expression in astrocytes in acute and chronic neurological diseases. J Neuroinflammation 7:34. https://doi.org/10.1186/1742-2094-7-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111(12):1805–1812. https://doi.org/10.1172/jci18921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. de Dios O, Gavela-Pérez T, Aguado-Roncero P, Pérez-Tejerizo G, Ricote M, González N, Garcés C, Soriano-Guillén L (2018) C-reactive protein expression in adipose tissue of children with acute appendicitis. Pediatr Res 84(4):564–567. https://doi.org/10.1038/s41390-018-0091-z

    Article  CAS  PubMed  Google Scholar 

  154. Devaraj S, Singh U, Jialal I (2009) The evolving role of C-reactive protein in atherothrombosis. Clin Chem 55(2):229–238. https://doi.org/10.1373/clinchem.2008.108886

    Article  CAS  PubMed  Google Scholar 

  155. Pasceri V, Willerson James T, Yeh Edward TH (2000) Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 102(18):2165–2168. https://doi.org/10.1161/01.CIR.102.18.2165

    Article  CAS  PubMed  Google Scholar 

  156. Calabró P, Willerson James T, Yeh Edward TH (2003) Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 108(16):1930–1932. https://doi.org/10.1161/01.CIR.0000096055.62724.C5

    Article  CAS  PubMed  Google Scholar 

  157. Gewurz H, Mold C, Siegel J, Fiedel B (1982) C-reactive protein and the acute phase response. Adv Intern Med 27:345–372

    CAS  PubMed  Google Scholar 

  158. Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20(1):197–216. https://doi.org/10.1146/annurev.immunol.20.083001.084359

    Article  CAS  PubMed  Google Scholar 

  159. Agrawal A, Shrive AK, Greenhough TJ, Volanakis JE (2001) Topology and structure of the C1q-binding site on C-reactive protein. J Immunol 166(6):3998–4004. https://doi.org/10.4049/jimmunol.166.6.3998

    Article  CAS  PubMed  Google Scholar 

  160. Apostolski S, Nikolić J, Bugarski-Prokopljević C, Miletić V, Pavlović S, Filipović S (1991) Serum and CSF immunological findings in ALS. Acta Neurol Scand 83(2):96–98. https://doi.org/10.1111/j.1600-0404.1991.tb04656.x

    Article  CAS  PubMed  Google Scholar 

  161. Trbojević-Čepe M, Brinar V, Pauro M, Vogrinc Ž, Štambuk N (1998) Cerebrospinal fluid complement activation in neurological diseases. J Neurol Sci 154(2):173–181. https://doi.org/10.1016/S0022-510X(97)00225-6

    Article  PubMed  Google Scholar 

  162. Sta M, Sylva-Steenland RMR, Casula M, de Jong JMBV, Troost D, Aronica E, Baas F (2011) Innate and adaptive immunity in amyotrophic lateral sclerosis: evidence of complement activation. Neurobiol Dis 42(3):211–220. https://doi.org/10.1016/j.nbd.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  163. Woodruff TM, Costantini KJ, Crane JW, Atkin JD, Monk PN, Taylor SM, Noakes PG (2008) The complement factor C5a contributes to pathology in a rat model of amyotrophic lateral sclerosis. J Immunol 181(12):8727. https://doi.org/10.4049/jimmunol.181.12.8727

    Article  CAS  PubMed  Google Scholar 

  164. Heurich B, el Idrissi NB, Donev RM, Petri S, Claus P, Neal J, Morgan BP, Ramaglia V (2011) Complement upregulation and activation on motor neurons and neuromuscular junction in the SOD1 G93A mouse model of familial amyotrophic lateral sclerosis. J Neuroimmunol 235(1):104–109. https://doi.org/10.1016/j.jneuroim.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  165. Donnenfeld H, Kascsak RJ, Bartfeld H (1984) Deposits of IgG and C3 in the spinal cord and motor cortex of ALS patients. J Neuroimmunol 6(1):51–57. https://doi.org/10.1016/0165-5728(84)90042-0

    Article  CAS  PubMed  Google Scholar 

  166. Kawamata T, Akiyama H, Yamada T, McGeer PL (1992) Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol 140(3):691–707

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Mantovani S, Gordon R, Macmaw JK, Pfluger CMM, Henderson RD, Noakes PG, McCombe PA, Woodruff TM (2014) Elevation of the terminal complement activation products C5a and C5b-9 in ALS patient blood. J Neuroimmunol 276(1):213–218. https://doi.org/10.1016/j.jneuroim.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  168. Chiu IM, Phatnani H, Kuligowski M, Tapia JC, Carrasco MA, Zhang M, Maniatis T, Carroll MC (2009) Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc Natl Acad Sci 106(49):20960. https://doi.org/10.1073/pnas.0911405106

    Article  PubMed  PubMed Central  Google Scholar 

  169. Lobsiger CS, Boillée S, Pozniak C, Khan AM, McAlonis-Downes M, Lewcock JW, Cleveland DW (2013) C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice. Proc Natl Acad Sci 110(46):E4385. https://doi.org/10.1073/pnas.1318309110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lee JD, Kumar V, Fung JNT, Ruitenberg MJ, Noakes PG, Woodruff TM (2017) Pharmacological inhibition of complement C5a-C5a1 receptor signalling ameliorates disease pathology in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Br J Pharmacol 174(8):689–699. https://doi.org/10.1111/bph.13730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Woodruff TM, Lee JD, Noakes PG (2014) Role for terminal complement activation in amyotrophic lateral sclerosis disease progression. Proc Natl Acad Sci 111(1):E3. https://doi.org/10.1073/pnas.1321248111

    Article  CAS  PubMed  Google Scholar 

  172. Hugon J (1996) Riluzole and ALS therapy. Wien Med Wochenschr 146(9–10):185–187

    CAS  PubMed  Google Scholar 

  173. Liu BS, Ferreira R, Lively S, Schlichter LC (2013) Microglial SK3 and SK4 currents and activation state are modulated by the neuroprotective drug, riluzole. J Neuroimmune Pharmacol 8(1):227–237. https://doi.org/10.1007/s11481-012-9365-0

    Article  PubMed  Google Scholar 

  174. Gilgun-Sherki Y, Panet H, Melamed E, Offen D (2003) Riluzole suppresses experimental autoimmune encephalomyelitis: implications for the treatment of multiple sclerosis. Brain Res 989(2):196–204. https://doi.org/10.1016/s0006-8993(03)03343-2

    Article  CAS  PubMed  Google Scholar 

  175. Wu Y, Satkunendrarajah K, Teng Y, Chow DS, Buttigieg J, Fehlings MG (2013) Delayed post-injury administration of riluzole is neuroprotective in a preclinical rodent model of cervical spinal cord injury. J Neurotrauma 30(6):441–452. https://doi.org/10.1089/neu.2012.2622

    Article  PubMed  PubMed Central  Google Scholar 

  176. Alhabbab R (2018) C-reactive protein (CRP) latex agglutination test, pp 59–62

    Google Scholar 

  177. Drieghe SA, Alsaadi H, Tugirimana PL, Delanghe JR (2014) A new high-sensitive nephelometric method for assaying serum C-reactive protein based on phosphocholine interaction. Clin Chem Lab Med 52(6):861–867. https://doi.org/10.1515/cclm-2013-0669

    Article  CAS  PubMed  Google Scholar 

  178. Santos V, Guerreiro T, Suarez W, Faria R, Fatibello-Filho O (2011) Evaluation of turbidimetric and nephelometric techniques for analytical determination of N-Acetylcysteine and Thiamine in pharmaceutical formulations employing a lab-made portable microcontrolled turbidimeter and nephelometer. J Braz Chem Soc 22:1968–1978. https://doi.org/10.1590/S0103-50532011001000019

    Article  Google Scholar 

  179. Seibert V, Wiesner A, Buschmann T, Meuer J (2004) Surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI TOF-MS) and ProteinChip technology in proteomics research. Pathol Res Pract 200(2):83–94. https://doi.org/10.1016/j.prp.2004.01.010

    Article  CAS  PubMed  Google Scholar 

  180. Nakken O, Meyer HE, Stigum H, Holmøy T (2019) High BMI is associated with low ALS risk: a population-based study. Neurology 93(5):e424–e432. https://doi.org/10.1212/wnl.0000000000007861

    Article  PubMed  Google Scholar 

  181. Janse van Mantgem MR, van Eijk RPA, van der Burgh HK, Tan HHG, Westeneng H-J, van Es MA, Veldink JH, van den Berg LH (2020) Prognostic value of weight loss in patients with amyotrophic lateral sclerosis: a population-based study. J Neurol Neurosurg Psychiatry 91(8):867–875. https://doi.org/10.1136/jnnp-2020-322909

    Article  PubMed  Google Scholar 

  182. Holm T, Maier A, Wicks P, Lang D, Linke P, Münch C, Steinfurth L, Meyer R, Meyer T (2013) Severe loss of appetite in amyotrophic lateral sclerosis patients: online self-assessment study. Interact J Med Res 2(1):e8. https://doi.org/10.2196/ijmr.2463

    Article  PubMed  PubMed Central  Google Scholar 

  183. Ngo ST, van Eijk RPA, Chachay V, van den Berg LH, McCombe PA, Henderson RD, Steyn FJ (2019) Loss of appetite is associated with a loss of weight and fat mass in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 20(7-8):497–505. https://doi.org/10.1080/21678421.2019.1621346

    Article  PubMed  Google Scholar 

  184. Nakayama Y, Shimizu T, Matsuda C, Haraguchi M, Hayashi K, Bokuda K, Nagao M, Kawata A, Ishikawa-Takata K, Isozaki E (2019) Body weight variation predicts disease progression after invasive ventilation in amyotrophic lateral sclerosis. Sci Rep 9(1):12262. https://doi.org/10.1038/s41598-019-48831-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Körner S, Hendricks M, Kollewe K, Zapf A, Dengler R, Silani V, Petri S (2013) Weight loss, dysphagia and supplement intake in patients with amyotrophic lateral sclerosis (ALS): impact on quality of life and therapeutic options. BMC Neurol 13(1):84. https://doi.org/10.1186/1471-2377-13-84

    Article  PubMed  PubMed Central  Google Scholar 

  186. Pradat PF, Bruneteau G, Gordon PH, Dupuis L, Bonnefont-Rousselot D, Simon D, Salachas F, Corcia P, Frochot V, Lacorte JM, Jardel C, Coussieu C, Le Forestier N, Lacomblez L, Loeffler JP, Meininger V (2010) Impaired glucose tolerance in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler 11(1-2):166–171. https://doi.org/10.3109/17482960902822960

    Article�� CAS  PubMed  Google Scholar 

  187. Reyes ET, Perurena OH, Festoff BW, Jorgensen R, Moore WV (1984) Insulin resistance in amyotrophic lateral sclerosis. J Neurol Sci 63(3):317–324. https://doi.org/10.1016/0022-510X(84)90154-0

    Article  CAS  PubMed  Google Scholar 

  188. Dedic SI, Stevic Z, Dedic V, Stojanovic VR, Milicev M, Lavrnic D (2012) Is hyperlipidemia correlated with longer survival in patients with amyotrophic lateral sclerosis? Neurol Res 34(6):576–580. https://doi.org/10.1179/1743132812y.0000000049

    Article  PubMed  Google Scholar 

  189. Dupuis L, Corcia P, Fergani A, Gonzalez De Aguilar JL, Bonnefont-Rousselot D, Bittar R, Seilhean D, Hauw JJ, Lacomblez L, Loeffler JP, Meininger V (2008) Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70(13):1004–1009. https://doi.org/10.1212/01.wnl.0000285080.70324.27

    Article  CAS  PubMed  Google Scholar 

  190. Steyn FJ, Ioannides ZA, van Eijk RPA, Heggie S, Thorpe KA, Ceslis A, Heshmat S, Henders AK, Wray NR, van den Berg LH, Henderson RD, McCombe PA, Ngo ST (2018) Hypermetabolism in ALS is associated with greater functional decline and shorter survival. J Neurol Neurosurg Psychiatry 89(10):1016. https://doi.org/10.1136/jnnp-2017-317887

    Article  PubMed  Google Scholar 

  191. Jésus P, Fayemendy P, Nicol M, Lautrette G, Sourisseau H, Preux PM, Desport JC, Marin B, Couratier P (2018) Hypermetabolism is a deleterious prognostic factor in patients with amyotrophic lateral sclerosis. Eur J Neurol 25(1):97–104. https://doi.org/10.1111/ene.13468

    Article  PubMed  Google Scholar 

  192. Desport JC, Preux PM, Magy L, Boirie Y, Vallat JM, Beaufrère B, Couratier P (2001) Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. Am J Clin Nutr 74(3):328–334. https://doi.org/10.1093/ajcn/74.3.328

    Article  CAS  PubMed  Google Scholar 

  193. Desport JC, Torny F, Lacoste M, Preux PM, Couratier P (2005) Hypermetabolism in ALS: correlations with clinical and paraclinical parameters. Neurodegener Dis 2(3-4):202–207. https://doi.org/10.1159/000089626

    Article  PubMed  Google Scholar 

  194. Bouteloup C, Desport JC, Clavelou P, Guy N, Derumeaux-Burel H, Ferrier A, Couratier P (2009) Hypermetabolism in ALS patients: an early and persistent phenomenon. J Neurol 256(8):1236–1242. https://doi.org/10.1007/s00415-009-5100-z

    Article  CAS  PubMed  Google Scholar 

  195. Tefera TW, Borges K (2019) Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1(G93A) mouse model of amyotrophic lateral sclerosis. J Cereb Blood Flow Metab 39(9):1710–1724. https://doi.org/10.1177/0271678x18764775

    Article  CAS  PubMed  Google Scholar 

  196. Tefera TW, Bartlett K, Tran SS, Hodson MP, Borges K (2019) Impaired pentose phosphate pathway in the spinal cord of the hSOD1(G93A) mouse model of amyotrophic lateral sclerosis. Mol Neurobiol 56(8):5844–5855. https://doi.org/10.1007/s12035-019-1485-6

    Article  CAS  PubMed  Google Scholar 

  197. Fujimori K, Ishikawa M, Otomo A, Atsuta N, Nakamura R, Akiyama T, Hadano S, Aoki M, Saya H, Sobue G, Okano H (2018) Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent. Nat Med 24(10):1579–1589. https://doi.org/10.1038/s41591-018-0140-5

    Article  CAS  PubMed  Google Scholar 

  198. Hor JH, Santosa MM, Lim VJW, Xuan Ho B, Taylor A, Khong ZJ, Ravits J, Fan Y, Liou YC, Soh BS, Ng SY (2019) ALS motor neurons exhibit hallmark metabolic defects that are rescued by nicotinamide and SIRT3 activation. bioRxiv 713651. https://doi.org/10.1101/713651

  199. Guo W, Naujock M, Fumagalli L, Vandoorne T, Baatsen P, Boon R, Ordovás L, Patel A, Welters M, Vanwelden T, Geens N, Tricot T, Benoy V, Steyaert J, Lefebvre-Omar C, Boesmans W, Jarpe M, Sterneckert J, Wegner F, Petri S, Bohl D, Vanden Berghe P, Robberecht W, Van Damme P, Verfaillie C, Van Den Bosch L (2017) HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat Commun 8(1):861. https://doi.org/10.1038/s41467-017-00911-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Allen S (2020) Understanding metabolic flexibility: a potential key to unlocking metabolic therapies in amyotrophic lateral sclerosis? Neural Regen Res 15(9):1654–1655. https://doi.org/10.4103/1673-5374.276333

    Article  PubMed  PubMed Central  Google Scholar 

  201. Palamiuc L, Schlagowski A, Ngo ST, Vernay A, Dirrig-Grosch S, Henriques A, Boutillier A-L, Zoll J, Echaniz-Laguna A, Loeffler J-P, René F (2015) A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol Med 7(5):526–546. https://doi.org/10.15252/emmm.201404433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Scaricamazza S, Salvatori I, Giacovazzo G, Loeffler JP, Renè F, Rosina M, Quessada C, Proietti D, Heil C, Rossi S, Battistini S, Giannini F, Volpi N, Steyn FJ, Ngo ST, Ferraro E, Madaro L, Coccurello R, Valle C, Ferri A (2020) Skeletal-muscle metabolic reprogramming in ALS-SOD1(G93A) mice predates disease onset and is a promising therapeutic target. iScience 23(5):101087. https://doi.org/10.1016/j.isci.2020.101087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Steyn F, Kirk S, Tefera T, Xie T, Tracey T, Kelk D, Wimberger E, Garton F, Roberts L, Chapman S, Coombes J, Leevy W, Ferri A, Valle C, Rene F, Loeffler J-P, McCombe P, Henderson R, Ngo S (2020) Altered skeletal muscle glucose-fatty acid flux in amyotrophic lateral sclerosis (ALS)

    Google Scholar 

  204. Kirk SE, Tracey TJ, Steyn FJ, Ngo ST (2019) Biomarkers of metabolism in amyotrophic lateral sclerosis. Front Neurol 10:191–191. https://doi.org/10.3389/fneur.2019.00191

    Article  PubMed  PubMed Central  Google Scholar 

  205. Pradat P-F, El Mendili M-M (2014) Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis. Biomed Res Int 2014:467560. https://doi.org/10.1155/2014/467560

    Article  PubMed  PubMed Central  Google Scholar 

  206. Roubeau V, Blasco H, Maillot F, Corcia P, Praline J (2015) Nutritional assessment of amyotrophic lateral sclerosis in routine practice: value of weighing and bioelectrical impedance analysis. Muscle Nerve 51(4):479–484. https://doi.org/10.1002/mus.24419

    Article  PubMed  Google Scholar 

  207. Jara JH, Sheets PL, Nigro MJ, Perić M, Brooks C, Heller DB, Martina M, Andjus PR, Ozdinler PH (2020) The electrophysiological determinants of corticospinal motor neuron vulnerability in ALS. Front Mol Neurosci 13:73. https://doi.org/10.3389/fnmol.2020.00073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Wirth AM, Khomenko A, Baldaranov D, Kobor I, Hsam O, Grimm T, Johannesen S, Bruun T-H, Schulte-Mattler W, Greenlee MW, Bogdahn U (2018) Combinatory biomarker use of cortical thickness, MUNIX, and ALSFRS-R at baseline and in longitudinal courses of individual patients with amyotrophic lateral sclerosis. Front Neurol 9:614. https://doi.org/10.3389/fneur.2018.00614

    Article  PubMed  PubMed Central  Google Scholar 

  209. Bereman MS, Kirkwood KI, Sabaretnam T, Furlong S, Rowe DB, Guillemin GJ, Mellinger AL, Muddiman DC (2020) Metabolite profiling reveals predictive biomarkers and the absence of β-Methyl Amino-l-alanine in plasma from individuals diagnosed with amyotrophic lateral sclerosis. J Proteome Res 19(8):3276–3285. https://doi.org/10.1021/acs.jproteome.0c00216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Chen X, Guo X, Huang R, Zheng Z, Chen Y, Shang HF (2014) An exploratory study of serum creatinine levels in patients with amyotrophic lateral sclerosis. Neurol Sci 35(10):1591–1597. https://doi.org/10.1007/s10072-014-1807-4

    Article  CAS  PubMed  Google Scholar 

  211. Chiò A, Calvo A, Bovio G, Canosa A, Bertuzzo D, Galmozzi F, Cugnasco P, Clerico M, De Mercanti S, Bersano E, Cammarosano S, Ilardi A, Manera U, Moglia C, Sideri R, Marinou K, Bottacchi E, Pisano F, Cantello R, Mazzini L, Mora G (2014) Amyotrophic lateral sclerosis outcome measures and the role of albumin and creatinine: a population-based study. JAMA Neurol 71(9):1134–1142. https://doi.org/10.1001/jamaneurol.2014.1129

    Article  PubMed  Google Scholar 

  212. Ito D, Hashizume A, Hijikata Y, Yamada S, Iguchi Y, Iida M, Kishimoto Y, Moriyoshi H, Hirakawa A, Katsuno M (2019) Elevated serum creatine kinase in the early stage of sporadic amyotrophic lateral sclerosis. J Neurol 266(12):2952–2961. https://doi.org/10.1007/s00415-019-09507-6

    Article  CAS  PubMed  Google Scholar 

  213. Tai H, Cui L, Guan Y, Liu M, Li X, Shen D, Li D, Cui B, Fang J, Ding Q, Zhang K, Liu S (2017) Correlation of creatine kinase levels with clinical features and survival in amyotrophic lateral sclerosis. Front Neurol 8:322. https://doi.org/10.3389/fneur.2017.00322

    Article  PubMed  PubMed Central  Google Scholar 

  214. McLeish MJ, Kenyon GL (2005) Relating structure to mechanism in creatine kinase. Crit Rev Biochem Mol Biol 40(1):1–20. https://doi.org/10.1080/10409230590918577

    Article  CAS  PubMed  Google Scholar 

  215. Huber K, Petzold J, Rehfeldt C, Ender K, Fiedler I (2007) Muscle energy metabolism: structural and functional features in different types of porcine striated muscles. J Muscle Res Cell Motil 28(4-5):249–258. https://doi.org/10.1007/s10974-007-9123-8

    Article  CAS  PubMed  Google Scholar 

  216. Hultman E, Greenhaff PL (1991) Skeletal muscle energy metabolism and fatigue during intense exercise in man. Sci Prog 75(298 Pt 3-4):361–370

    CAS  PubMed  Google Scholar 

  217. Le Masson G, Przedborski S, Abbott LF (2014) A computational model of motor neuron degeneration. Neuron 83(4):975–988. https://doi.org/10.1016/j.neuron.2014.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901. https://doi.org/10.1016/j.neuron.2015.03.035

    Article  CAS  PubMed  Google Scholar 

  219. Rafiq MK, Lee E, Bradburn M, McDermott CJ, Shaw PJ (2016) Creatine kinase enzyme level correlates positively with serum creatinine and lean body mass, and is a prognostic factor for survival in amyotrophic lateral sclerosis. Eur J Neurol 23(6):1071–1078. https://doi.org/10.1111/ene.12995

    Article  CAS  PubMed  Google Scholar 

  220. Dupuis L, Oudart H, René F, de Aguilar J-LG, Loeffler J-P (2004) Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: Benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci U S A 101(30):11159. https://doi.org/10.1073/pnas.0402026101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Szelechowski M, Amoedo N, Obre E, Léger C, Allard L, Bonneu M, Claverol S, Lacombe D, Oliet S, Chevallier S, Le Masson G, Rossignol R (2018) Metabolic reprogramming in amyotrophic lateral sclerosis. Sci Rep 8(1):3953. https://doi.org/10.1038/s41598-018-22318-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Schutte JE, Longhurst JC, Gaffney FA, Bastian BC, Blomqvist CG (1981) Total plasma creatinine: an accurate measure of total striated muscle mass. J Appl Physiol Respir Environ Exerc Physiol 51(3):762–766. https://doi.org/10.1152/jappl.1981.51.3.762

    Article  CAS  PubMed  Google Scholar 

  223. Baxmann AC, Ahmed MS, Marques NC, Menon VB, Pereira AB, Kirsztajn GM, Heilberg IP (2008) Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol 3(2):348–354. https://doi.org/10.2215/cjn.02870707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. van Eijk RPA, Eijkemans MJC, Ferguson TA, Nikolakopoulos S, Veldink JH, van den Berg LH (2018) Monitoring disease progression with plasma creatinine in amyotrophic lateral sclerosis clinical trials. J Neurol Neurosurg Psychiatry 89(2):156. https://doi.org/10.1136/jnnp-2017-317077

    Article  PubMed  Google Scholar 

  225. Harpole M, Davis J, Espina V (2016) Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteomics 13(6):609–626. https://doi.org/10.1080/14789450.2016.1190651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Yao F, Hong X, Li S, Zhang Y, Zhao Q, Du W, Wang Y, Ni J (2018) Urine-based biomarkers for alzheimer's disease identified through coupling computational and experimental methods. J Alzheimers Dis 65(2):421–431. https://doi.org/10.3233/jad-180261

    Article  CAS  PubMed  Google Scholar 

  227. Watanabe Y, Hirao Y, Kasuga K, Tokutake T, Semizu Y, Kitamura K, Ikeuchi T, Nakamura K, Yamamoto T (2019) Molecular network analysis of the urinary proteome of Alzheimer’s disease patients. Demen Geriatr Cognit Disord Extra 9(1):53–65. https://doi.org/10.1159/000496100

    Article  Google Scholar 

  228. Shepheard SR, Wuu J, Cardoso M, Wiklendt L, Dinning PG, Chataway T, Schultz D, Benatar M, Rogers ML (2017) Urinary p75(ECD): a prognostic, disease progression, and pharmacodynamic biomarker in ALS. Neurology 88(12):1137–1143. https://doi.org/10.1212/WNL.0000000000003741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ibanez CF, Simi A (2012) p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci 35(7):431–440. https://doi.org/10.1016/j.tins.2012.03.007

    Article  CAS  PubMed  Google Scholar 

  230. Yan Q, Johnson EM (1988) An immunohistochemical study of the nerve growth factor receptor in developing rats. J Neurosci 8(9):3481. https://doi.org/10.1523/JNEUROSCI.08-09-03481.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Ferri CC, Moore FA, Bisby MA (1998) Effects of facial nerve injury on mouse motoneurons lacking the p75 low-affinity neurotrophin receptor. J Neurobiol 34(1):1–9. https://doi.org/10.1002/(SICI)1097-4695(199801)34:1<1::AID-NEU1>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  232. Lowry KS, Murray SS, McLean CA, Talman P, Mathers S, Lopes EC, Cheema SS (2001) A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2(3):127–134. https://doi.org/10.1080/146608201753275463

    Article  CAS  PubMed  Google Scholar 

  233. Copray JC, Jaarsma D, Küst BM, Bruggeman RW, Mantingh I, Brouwer N, Boddeke HW (2003) Expression of the low affinity neurotrophin receptor p75 in spinal motoneurons in a transgenic mouse model for amyotrophic lateral sclerosis. Neuroscience 116(3):685–694. https://doi.org/10.1016/s0306-4522(02)00755-8

    Article  CAS  PubMed  Google Scholar 

  234. Kenchappa RS, Tep C, Korade Z, Urra S, Bronfman FC, Yoon SO, Carter BD (2010) p75 neurotrophin receptor-mediated apoptosis in sympathetic neurons involves a biphasic activation of JNK and up-regulation of tumor necrosis factor-alpha-converting enzyme/ADAM17. J Biol Chem 285(26):20358–20368. https://doi.org/10.1074/jbc.M109.082834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. DiStefano PS, Clagett-Dame M, Chelsea DM, Loy R (1991) Developmental regulation of human truncated nerve growth factor receptor. Ann Neurol 29(1):13–20. https://doi.org/10.1002/ana.410290105

    Article  CAS  PubMed  Google Scholar 

  236. Jia R, Shepheard S, Jin J, Hu F, Zhao X, Xue L, Xiang L, Qi H, Qu Q, Guo F, Rogers ML, Dang J (2017) Urinary extracellular domain of neurotrophin receptor p75 as a biomarker for amyotrophic lateral sclerosis in a Chinese cohort. Sci Rep 7(1):5127. https://doi.org/10.1038/s41598-017-05430-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Shepheard SR, Chataway T, Schultz DW, Rush RA, Rogers ML (2014) The extracellular domain of neurotrophin receptor p75 as a candidate biomarker for amyotrophic lateral sclerosis. PLoS One 9(1):e87398. https://doi.org/10.1371/journal.pone.0087398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Lingor P, Weber M, Camu W, Friede T, Hilgers R, Leha A, Neuwirth C, Günther R, Benatar M, Kuzma-Kozakiewicz M, Bidner H, Blankenstein C, Frontini R, Ludolph A, Koch JC (2019) ROCK-ALS: protocol for a randomized, placebo-controlled, double-blind phase iia trial of safety, tolerability and efficacy of the rho kinase (ROCK) inhibitor Fasudil in amyotrophic lateral sclerosis. Front Neurol 10:293. https://doi.org/10.3389/fneur.2019.00293

    Article  PubMed  PubMed Central  Google Scholar 

  239. Gold J, Rowe DB, Kiernan MC, Vucic S, Mathers S, van Eijk RPA, Nath A, Garcia Montojo M, Norato G, Santamaria UA, Rogers ML, Malaspina A, Lombardi V, Mehta PR, Westeneng HJ, van den Berg LH, Al-Chalabi A (2019) Safety and tolerability of Triumeq in amyotrophic lateral sclerosis: the Lighthouse trial. Amyotroph Lateral Scler Frontotemporal Degener 20(7-8):595–604. https://doi.org/10.1080/21678421.2019.1632899

    Article  CAS  PubMed  Google Scholar 

  240. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014:761264. https://doi.org/10.1155/2014/761264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Tönnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57(4):1105–1121. https://doi.org/10.3233/jad-161088

    Article  PubMed  PubMed Central  Google Scholar 

  242. Phan K, He Y, Pickford R, Bhatia S, Katzeff JS, Hodges JR, Piguet O, Halliday GM, Kim WS (2020) Uncovering pathophysiological changes in frontotemporal dementia using serum lipids. Sci Rep 10(1):3640. https://doi.org/10.1038/s41598-020-60457-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Nascimento C, Nunes VP, Diehl Rodriguez R, Takada L, Suemoto CK, Grinberg LT, Nitrini R, Lafer B (2019) A review on shared clinical and molecular mechanisms between bipolar disorder and frontotemporal dementia. Prog Neuropsychopharmacol Biol Psychiatry 93:269–283. https://doi.org/10.1016/j.pnpbp.2019.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  244. Kumar A, Ratan RR (2016) Oxidative stress and Huntington’s disease: the good, the bad, and the ugly. J Huntingtons Dis 5(3):217–237. https://doi.org/10.3233/jhd-160205

    Article  PubMed  PubMed Central  Google Scholar 

  245. Dalfó E, Portero-Otín M, Ayala V, Martínez A, Pamplona R, Ferrer I (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol 64(9):816–830. https://doi.org/10.1097/01.jnen.0000179050.54522.5a

    Article  PubMed  Google Scholar 

  246. Mao P (2013) Oxidative stress and its clinical applications in dementia. J Neurodegener Dis 2013:319898. https://doi.org/10.1155/2013/319898

    Article  CAS  PubMed  Google Scholar 

  247. Pollari E, Goldsteins G, Bart G, Koistinaho J, Giniatullin R (2014) The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front Cell Neurosci 8:131. https://doi.org/10.3389/fncel.2014.00131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Carrì MT, Valle C, Bozzo F, Cozzolino M (2015) Oxidative stress and mitochondrial damage: importance in non-SOD1 ALS. Front Cell Neurosci 9:41. https://doi.org/10.3389/fncel.2015.00041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Barber SC, Mead RJ, Shaw PJ (2006) Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta Mol Basis Dis 1762(11):1051–1067. https://doi.org/10.1016/j.bbadis.2006.03.008

    Article  CAS  Google Scholar 

  250. Pansarasa O, Bordoni M, Diamanti L, Sproviero D, Gagliardi S, Cereda C (2018) SOD1 in amyotrophic lateral sclerosis: “Ambivalent” behavior connected to the disease. Int J Mol Sci 19(5). https://doi.org/10.3390/ijms19051345

  251. Benatar M (2007) Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis 26(1):1–13. https://doi.org/10.1016/j.nbd.2006.12.015

    Article  CAS  PubMed  Google Scholar 

  252. Benedetti A, Comporti M, Esterbauer H (1980) Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim Biophys Acta Lipids Lipid Metab 620(2):281–296. https://doi.org/10.1016/0005-2760(80)90209-X

    Article  CAS  Google Scholar 

  253. Pedersen WA, Cashman NR, Mattson MP (1999) The lipid peroxidation product 4-hydroxynonenal impairs glutamate and glucose transport and choline acetyltransferase activity in NSC-19 motor neuron cells. Exp Neurol 155(1):1–10. https://doi.org/10.1006/exnr.1998.6890

    Article  CAS  PubMed  Google Scholar 

  254. Bruce-Keller AJ, Li YJ, Lovell MA, Kraemer PJ, Gary DS, Brown RR, Markesbery WR, Mattson MP (1998) 4-Hydroxynonenal, a product of lipid peroxidation, damages cholinergic neurons and impairs visuospatial memory in rats. J Neuropathol Exp Neurol 57(3):257–267. https://doi.org/10.1097/00005072-199803000-00007

    Article  CAS  PubMed  Google Scholar 

  255. Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, Mattson MP (1998) Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol 44(5):819–824. https://doi.org/10.1002/ana.410440518

    Article  CAS  PubMed  Google Scholar 

  256. Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH (2004) Increased lipid peroxidation in sera of ALS patients. Neurology 62(10):1758. https://doi.org/10.1212/WNL.62.10.1758

    Article  CAS  PubMed  Google Scholar 

  257. Devos D, Moreau C, Kyheng M, Garçon G, Rolland AS, Blasco H, Gelé P, Timothée Lenglet T, Veyrat-Durebex C, Corcia P, Dutheil M, Bede P, Jeromin A, Oeckl P, Otto M, Meininger V, Danel-Brunaud V, Devedjian JC, Duce JA, Pradat PF (2019) A ferroptosis-based panel of prognostic biomarkers for amyotrophic lateral sclerosis. Sci Rep 9(1):2918. https://doi.org/10.1038/s41598-019-39739-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Tang X, Sayre LM, Tochtrop GP (2011) A mass spectrometric analysis of 4-hydroxy-2-(E)-nonenal modification of cytochrome c. J Mass Spectrom 46(3):290–297. https://doi.org/10.1002/jms.1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Aldini G, Gamberoni L, Orioli M, Beretta G, Regazzoni L, Maffei Facino R, Carini M (2006) Mass spectrometric characterization of covalent modification of human serum albumin by 4-hydroxy-trans-2-nonenal. J Mass Spectrom 41(9):1149–1161. https://doi.org/10.1002/jms.1067

    Article  CAS  PubMed  Google Scholar 

  260. Ethen CM, Reilly C, Feng X, Olsen TW, Ferrington DA (2007) Age-related macular degeneration and retinal protein modification by 4-hydroxy-2-nonenal. Invest Ophthalmol Vis Sci 48(8):3469–3479. https://doi.org/10.1167/iovs.06-1058

    Article  PubMed  Google Scholar 

  261. Rauniyar N, Stevens SM, Prokai-Tatrai K, Prokai L (2009) Characterization of 4-hydroxy-2-nonenal-modified peptides by liquid chromatography-tandem mass spectrometry using data-dependent acquisition: neutral loss-driven MS3 versus neutral loss-driven electron capture dissociation. Anal Chem 81(2):782–789. https://doi.org/10.1021/ac802015m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Nadkarni DV, Sayre LM (1995) Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal. Chem Res Toxicol 8(2):284–291. https://doi.org/10.1021/tx00044a014

    Article  CAS  PubMed  Google Scholar 

  263. Richter C (1995) Oxidative damage to mitochondrial DNA and its relationship to ageing. Int J Biochem Cell Biol 27(7):647–653. https://doi.org/10.1016/1357-2725(95)00025-K

    Article  CAS  PubMed  Google Scholar 

  264. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy-2' -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(2):120–139. https://doi.org/10.1080/10590500902885684

    Article  CAS  PubMed  Google Scholar 

  265. Suzuki S, Hinokio Y, Komatu K, Ohtomo M, Onoda M, Hirai S, Hirai M, Hirai A, Chiba M, Kasuga S, Akai H, Toyota T (1999) Oxidative damage to mitochondrial DNA and its relationship to diabetic complications. Diabetes Res Clin Pract 45(2):161–168. https://doi.org/10.1016/S0168-8227(99)00046-7

    Article  CAS  PubMed  Google Scholar 

  266. Blasco H, Garcon G, Patin F, Veyrat-Durebex C, Boyer J, Devos D, Vourc’h P, Andres CR, Corcia P (2017) Panel of oxidative stress and inflammatory biomarkers in ALS: a Pilot Study. Can J Neurol Sci 44(1):90–95. https://doi.org/10.1017/cjn.2016.284

    Article  PubMed  Google Scholar 

  267. Bogdanov M, Brown RH, Matson W, Smart R, Hayden D, O’Donnell H, Flint Beal M, Cudkowicz M (2000) Increased oxidative damage to DNA in ALS patients. Free Radic Biol Med 29(7):652–658. https://doi.org/10.1016/S0891-5849(00)00349-X

    Article  CAS  PubMed  Google Scholar 

  268. Smith EF, Shaw PJ, De Vos KJ (2019) The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 710:132933. https://doi.org/10.1016/j.neulet.2017.06.052

    Article  CAS  PubMed  Google Scholar 

  269. Mitsumoto H, Santella RM, Liu X, Bogdanov M, Zipprich J, Wu H-C, Mahata J, Kilty M, Bednarz K, Bell D, Gordon PH, Hornig M, Mehrazin M, Naini A, Flint Beal M, Factor-Litvak P (2008) Oxidative stress biomarkers in sporadic ALS. Amyotroph Lateral Scler 9(3):177–183. https://doi.org/10.1080/17482960801933942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Shefner JM, Al-Chalabi A, Baker MR, Cui L-Y, de Carvalho M, Eisen A, Grosskreutz J, Hardiman O, Henderson R, Matamala JM, Mitsumoto H, Paulus W, Simon N, Swash M, Talbot K, Turner MR, Ugawa Y, van den Berg LH, Verdugo R, Vucic S, Kaji R, Burke D, Kiernan MC (2020) A proposal for new diagnostic criteria for ALS. Clin Neurophysiol. https://doi.org/10.1016/j.clinph.2020.04.005

  271. Chiò A (1999) ISIS Survey: an international study on the diagnostic process and its implications in amyotrophic lateral sclerosis. J Neurol 246(Suppl 3):Iii1–Iii5. https://doi.org/10.1007/bf03161081

    Article  PubMed  Google Scholar 

  272. Ganesalingam J, An J, Shaw CE, Shaw G, Lacomis D, Bowser R (2011) Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J Neurochem 117(3):528–537. https://doi.org/10.1111/j.1471-4159.2011.07224.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyuan T. Ngo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Holdom, C.J., Steyn, F.J., Henderson, R.D., McCombe, P.A., Rogers, ML., Ngo, S.T. (2022). Biofluid Biomarkers of Amyotrophic Lateral Sclerosis . In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1712-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1712-0_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1711-3

  • Online ISBN: 978-1-0716-1712-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics