Skip to main content

Biomarkers in Huntington’s Disease

  • Protocol
  • First Online:
Neurodegenerative Diseases Biomarkers

Part of the book series: Neuromethods ((NM,volume 173))

Abstract

Huntington’s disease (HD) is a neurodegenerative disorder caused by a trinucleotide repeat expansion mutation. The expansion length is the diagnostic biomarker for the disease. It can result in four different scenarios depending on its number of repeats: the intermediate allele, adult onset disease with either reduced or full penetrance, and juvenile HD. Along with various genetic modifiers, the mutation predicts the age of clinical onset. By convention, the clinical diagnosis of HD is reached when there is sufficient motor dysfunction, as judged by the Unified HD Rating Scale. This scale is widely used in clinical trials, but is limited by its subjectivity, categorical ratings, and insensitivity to subtle features in early disease. The need for sensitive, objective, continuous biomarkers has heralded a wave of digital biomarkers, which range from devices embedded with force transducers to smartphone applications. These have become a standard component of clinical trial assessments. However, they provide no insight into the pathological status of the disease. Certain wet biomarkers can identify the earliest indication of pathological change, when disease-modifying therapy would ideally be initiated to prevent or delay the clinical manifestations of the disease. Such treatments are being developed, but their evaluation in subjects with minimal clinical findings will depend on sensitive pathological biomarkers of progression. The most promising protein biomarkers are neurofilament light chain and mutant huntingtin, the latter having shown utility as a pharmacodynamic biomarker for a novel huntingtin-lowering treatment. Of the genetic biomarkers, certain microRNAs and telomere length have proven to be early indicators of pathological change. These are discussed, along with other biomarker candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
eBook
USD 109.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)
Hardcover Book
USD 149.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983

    Article  Google Scholar 

  2. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR, International Huntington’s Disease Collaborative Group (2004) A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 65(4):267–277

    Article  CAS  PubMed  Google Scholar 

  3. Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, Warby SC, Morrison P, Nance M, Ross CA, Margolis RL, Squitieri F, Orobello S, Di Donato S, Gomez-Tortosa E, Ayuso C, Suchowersky O, Trent RJ, McCusker E, Novelletto A, Frontali M, Jones R, Ashizawa T, Frank S, Saint-Hilaire MH, Hersch SM, Rosas HD, Lucente D, Harrison MB, Zanko A, Abramson RK, Marder K, Sequeiros J, Paulsen JS, Landwehrmeyer GB, Myers RH, MacDonald ME, Gusella JF (2012) CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 78(10):690–695. https://doi.org/10.1212/WNL.0b013e318249f683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Myers RH (2004) Huntington’s disease genetics. NeuroRx 1(2):255–262. https://doi.org/10.1602/neurorx.1.2.255

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bates GP (2005) History of genetic disease: the molecular genetics of Huntington disease—a history. Nat Rev Genet 6(10):766–773. https://doi.org/10.1038/nrg1686

    Article  CAS  PubMed  Google Scholar 

  6. Rubinsztein DC, Leggo J, Coles R, Almqvist E, Biancalana V, Cassiman JJ, Chotai K, Connarty M, Crauford D, Curtis A, Curtis D, Davidson MJ, Differ AM, Dode C, Dodge A, Frontali M, Ranen NG, Stine OC, Sherr M, Abbott MH, Franz ML, Graham CA, Harper PS, Hedreen JC, Jackson A, Kaplan JC, Losekoot M, MacMillan JC, Morrison P, Trottier Y, Novelletto A, Simpson SA, Theilmann J, Whittaker JL, Folstein SE, Ross CA, Hayden MR (1996) Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet 59(1):16–22

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kay C, Collins JA, Miedzybrodzka Z, Madore SJ, Gordon ES, Gerry N, Davidson M, Slama RA, Hayden MR (2016) Huntington disease reduced penetrance alleles occur at high frequency in the general population. Neurology 87(3):282–288. https://doi.org/10.1212/WNL.0000000000002858

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ranen NG, Stine OC, Abbott MH, Sherr M, Codori AM, Franz ML, Chao NI, Chung AS, Pleasant N, Callahan C, Kasch LM, Ghaffari M, Chase GA, Kazazian HH, Brandt J, Folstein SE, Ross CA (1995) Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet 57(3):593–602

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldberg YP, Kremer B, Andrew SE, Theilmann J, Graham RK, Squitieri F, Telenius H, Adam S, Sajoo A, Starr E, Heiberg A, Wolff G, Hayden MR (1993) Molecular analysis of new mutations for Huntington’s disease: intermediate alleles and sex of origin effects. Nat Genet 5(2):174–179. https://doi.org/10.1038/ng1093-174

    Article  CAS  PubMed  Google Scholar 

  10. Killoran A, Biglan KM, Jankovic J, Eberly S, Kayson E, Oakes D, Young AB, Shoulson I (2013) Characterization of the Huntington intermediate CAG repeat expansion phenotype in PHAROS. Neurology 80(22):2022–2027. https://doi.org/10.1212/WNL.0b013e318294b304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ha AD, Beck CA, Jankovic J (2012) Intermediate CAG Repeats in Huntington’s disease: analysis of COHORT. Tremor Other Hyperkinet Mov (N Y) 2:tre-02-64-287-4. https://doi.org/10.7916/D8FF3R2P

    Article  Google Scholar 

  12. Cubo E, Ramos-Arroyo MA, Martinez-Horta S, Martinez-Descalls A, Gil-Polo C (2016) Intermediate CAG repeats in Huntington’s disease. A longitudinal analysis of the European Huntington’s Disease Network REGISTRY Cohort (S25. 003) [Abstract]. Neurology 86:571–578

    Google Scholar 

  13. Kenney C, Powell S, Jankovic J (2007) Autopsy-proven Huntington’s disease with 29 trinucleotide repeats. Mov Disord 22(1):127–130. https://doi.org/10.1002/mds.21195

    Article  PubMed  Google Scholar 

  14. Ha AD, Jankovic J (2011) Exploring the correlates of intermediate CAG repeats in Huntington disease. Postgrad Med 123(5):116–121. https://doi.org/10.3810/pgm.2011.09.2466

    Article  PubMed  Google Scholar 

  15. Squitieri F, Esmaeilzadeh M, Ciarmiello A, Jankovic J (2011) Caudate glucose hypometabolism in a subject carrying an unstable allele of intermediate CAG(33) repeat length in the Huntington’s disease gene. Mov Disord 26(5):925–927. https://doi.org/10.1002/mds.23623

    Article  PubMed  Google Scholar 

  16. Semaka A, Kay C, Belfroid RDM, Bijlsma EK, Losekoot M, van Langen IM, van Maarle MC, Oosterloo M, Hayden MR, van Belzen MJ (2015) A new mutation for Huntington disease following maternal transmission of an intermediate allele. Eur J Med Genet 58(1):28–30. https://doi.org/10.1016/j.ejmg.2014.11.005

    Article  PubMed  Google Scholar 

  17. Gonitel R, Moffitt H, Sathasivam K, Woodman B, Detloff PJ, Faull RL, Bates GP (2008) DNA instability in postmitotic neurons. Proc Natl Acad Sci U S A 105(9):3467–3472. https://doi.org/10.1073/pnas.0800048105

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wright GEB, Collins JA, Kay C, McDonald C, Dolzhenko E, Xia Q, Bečanović K, Drögemöller BI, Semaka A, Nguyen CM, Trost B, Richards F, Bijlsma EK, Squitieri F, Ross CJD, Scherer SW, Eberle MA, Yuen RKC, Hayden MR (2019) Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of huntington disease. Am J Hum Genet 104(6):1116–1126. https://doi.org/10.1016/j.ajhg.2019.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Swami M, Swami M, Hendricks AE, Gillis T, Massood T, Mysore J, Myers RH, Wheeler VC et al Hum Mol Genet 18(16):3039–3047. https://doi.org/10.1093/hmg/ddp242

  20. Bečanović K, Nørremølle A, Neal SJ, Kay C, Collins JA, Arenillas D, Lilja T, Gaudenzi G, Manoharan S, Doty CN, Beck J, Lahiri N, Portales-Casamar E, Warby SC, Connolly C, De Souza RA, REGISTRY Investigators of the European Huntington’s Disease Network, Tabrizi SJ, Hermanson O, Langbehn DR, Hayden MR, Wasserman WW, Leavitt BR (2015) A SNP in the HTT promoter alters NF-κB binding and is a bidirectional genetic modifier of Huntington disease. Nat Neurosci 18(6):807–816. https://doi.org/10.1038/nn.4014

    Article  CAS  PubMed  Google Scholar 

  21. Long JD, Lee JM, Aylward EH, Gillis T, Mysore JS, Abu Elneel K, Chao MJ, Paulsen JS, MacDonald ME, Gusella JF (2018) Genetic modification of Huntington disease acts early in the prediagnosis phase. Am J Hum Genet 103(3):349–357. https://doi.org/10.1016/j.ajhg.2018.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Holbert S, Denghien I, Kiechle T, Rosenblatt A, Wellington C, Hayden MR, Margolis RL, Ross CA, Dausset J, Ferrante RJ, Néri C (2001) The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington’s disease pathogenesis. Proc Natl Acad Sci U S A 98:1811–1816. https://doi.org/10.1073/pnas.041566798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Metzger S, Saukko M, Van Che H, Tong L, Puder Y, Riess O, Nguyen HP (2010) Age at onset in Huntington’s disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7. Hum Genet 128:453–459. https://doi.org/10.1007/s00439-010-0873-9

    Article  CAS  PubMed  Google Scholar 

  24. Soyal SM, Felder TK, Auer S, Hahne P, Oberkofler H, Witting A, Paulmichl M, Landwehrmeyer GB, Weydt P, Patsch W, European Huntington Disease Network (2012) A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onset. Hum Mol Genet 21:3461–3473. https://doi.org/10.1093/hmg/dds177

    Article  CAS  PubMed  Google Scholar 

  25. Xu EH, Tang Y, Li D, Jia JP (2009) Polymorphism of HD and UCHL-1 genes in Huntington’s disease. J Clin Neurosci 16:1473–1477. https://doi.org/10.1016/j.jocn.2009.03.027

    Article  CAS  PubMed  Google Scholar 

  26. Kloster E, Saft C, Epplen JT, Arning L (2013) CNR1 variation is associated with the age at onset in Huntington disease. Eur J Med Genet 56:416–419. https://doi.org/10.1016/j.ejmg.2013.05.007

    Article  PubMed  Google Scholar 

  27. Gayán J, Brocklebank D, Andresen JM, Alkorta-Aranburu G, US-Venezuela Collaborative Research Group, Zameel Cader M, Roberts SA, Cherny SS, Wexler NS, Cardon LR, Housman DE (2008) Genomewide linkage scan reveals novel loci modifying age of onset of Huntington’s disease in the Venezuelan HD kindreds. Genet Epidemiol 32:445–453. https://doi.org/10.1002/gepi.20317

    Article  PubMed  Google Scholar 

  28. Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium (2015) Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell 162(3):516–526. https://doi.org/10.1016/j.cell.2015.07.003

    Article  CAS  Google Scholar 

  29. Moss DJH, Pardiñas AF, Langbehn D, Lo K, Leavitt BR, Roos R, Durr A, Mead S, TRACK-HD Investigators; REGISTRY Investigators, Holmans P, Jones L, Tabrizi SJ (2017) Identification of genetic variants associated with Huntington’s disease progression: a genome-wide association. Lancet Neurol 16(9):701–711. https://doi.org/10.1016/S1474-4422(17)30161-8

    Article  CAS  PubMed  Google Scholar 

  30. Dhaenens CM, Burnouf S, Simonin C, Van Brussel E, Duhamel A, Defebvre L, Duru C, Vuillaume I, Cazeneuve C, Charles P, Maison P, Debruxelles S, Verny C, Gervais H, Azulay JP, Tranchant C, Bachoud-Levi AC, Dürr A, Buée L, Krystkowiak P, Sablonnière B, Blum D, Huntington French Speaking Network (2009) A genetic variation in the ADORA2A gene modifies age at. onset in Huntington’s disease. Neurobiol Dis 35:474–476. https://doi.org/10.1016/j.nbd.2009.06.009

    Article  CAS  PubMed  Google Scholar 

  31. Djoussé L, Knowlton B, Hayden MR, Almqvist EW, Brinkman RR, Ross CA, Margolis RL, Rosenblatt A, Durr A, Dode C, Morrison PJ, Novelletto A, Frontali M, Trent RJ, McCusker E, Gómez-Tortosa E, Mayo Cabrero D, Jones R, Zanko A, Nance M, Abramson RK, Suchowersky O, Paulsen JS, Harrison MB, Yang Q, Cupples LA, Mysore J, Gusella JF, MacDonald ME, Myers RH (2004) Evidence for a modifier of onset age in Huntington disease linked to the HD gene in 4p16. Neurogenetics 5(2):109–114. https://doi.org/10.1007/s10048-004-0175-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taherzadeh-Fard E, Saft C, Andrich J, Wieczorek S, Arning L (2009) PGC-1alpha as modifier of onset age in Huntington disease. Mol Neurodegen 4:10. https://doi.org/10.1186/1750-1326-4-10

    Article  CAS  Google Scholar 

  33. Metzger S, Bauer P, Tomiuk J, Laccone F, Didonato S, Gellera C, Mariotti C, Lange HW, Weirich-Schwaiger H, Wenning GK, Seppi K, Melegh B, Havasi V, Balikó L, Wieczorek S, Zaremba J, Hoffman-Zacharska D, Sulek A, Basak AN, Soydan E, Zidovska J, Kebrdlova V, Pandolfo M, Ribaï P, Kadasi L, Kvasnicova M, Weber BH, Kreuz F, Dose M, Stuhrmann M, Riess O (2006) Genetic analysis of candidate genes modifying the age-at-onset in Huntington’s disease. Hum Genet 120(2):285–292. https://doi.org/10.1007/s00439-006-0221-2

    Article  CAS  PubMed  Google Scholar 

  34. Lee JM, Chao MJ, Harold D, Abu Elneel K, Gillis T, Holmans P, Jones L, Orth M, Myers RH, Kwak S, Wheeler VC, MacDonald ME, Gusella JF (2017) A modifier of Huntington’s disease onset at the MLH1 locus. Hum Mol Genet 26(19):3859–3867. https://doi.org/10.1093/hmg/ddx286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vuono R, Kouli A, Legault EM, Chagnon L, Allinson KS, La Spada A, REGISTRY Investigators of the European Huntington’s Disease Network, Biunno I, Barker RA, Drouin-Ouellet J (2020) Association between Toll-Like Receptor 4 (TLR4) and triggering receptor expressed on myeloid cells 2 (TREM2) genetic variants and clinical progression of Huntington’s disease. Mov Disord 35(3):401–408. https://doi.org/10.1002/mds.27911

    Article  CAS  PubMed  Google Scholar 

  36. Correia K, Harold D, Kim KH, Holmans P, Jones L, Orth M, Myers RH, Kwak S, Wheeler VC, MacDonald ME, Gusella JF, Lee JM (2015) The genetic modifiers of motor onset age (GeM MOA) website: genome-wide association analysis for genetic modifiers of Huntington’s disease. J Huntingtons Dis 4(3):279–284. https://doi.org/10.3233/JHD-150169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vuono R, Winder-Rhodes S, de Silva R, Cisbani G, Drouin-Ouellet J, REGISTRY Investigators of the European Huntington’s Disease Network, Spillantini MG, Cicchetti F, Barker RA (2015) The role of tau in the pathological process and clinical expression of Huntington’s disease. Brain 138:1907–1918. https://doi.org/10.1093/brain/awv107

    Article  PubMed  PubMed Central  Google Scholar 

  38. de Diego-Balaguer R, Schramm C, Rebeix I, Dupoux E, Durr A, Brice A, Charles P, Cleret de Langavant L, Youssov K, Verny C, Damotte V, Azulay JP, Goizet C, Simonin C, Tranchant C, Maison P, Rialland A, Schmitz D, Jacquemot C, Fontaine B, Bachoud-Lévi AC, French Speaking Huntington Group (2016) COMT Val158Met polymorphism modulates Huntington’s disease progression. PLoS One 11(9):e0161106. https://doi.org/10.1371/journal.pone.0161106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huntington Study Group (1996) Unified Huntington’s disease rating scale: reliability and consistency. Mov Disord 11(2):136–142. https://doi.org/10.1002/mds.870110204

    Article  Google Scholar 

  40. Ross CA, Reilmann R, Cardoso F, McCusker EA, Testa CM, Stout JC, Leavitt BR, Pei Z, Landwehrmeyer B, Martinez A, Levey J, Srajer T, Bang J, Tabrizi SJ (2019) Movement disorder society task force viewpoint: Huntington’s disease diagnostic categories. Mov Disord Clin Pract 6(7):541–546. https://doi.org/10.1002/mdc3.12808

    Article  PubMed  PubMed Central  Google Scholar 

  41. Paulsen JS, Long JD, Ross CA, Harrington DL, Erwin CJ, Williams JK, Westervelt HJ, Johnson HJ, Aylward EH, Zhang Y, Bockholt HJ, Barker RA, PREDICT-HD Investigators and Coordinators of the Huntington Study Group (2014) Prediction of manifest Huntingtons disease with clinical and imaging measures: a prospective observational study. Lancet Neurol 13(12):1193–1201. https://doi.org/10.1016/S1474-4422(14)70238-8

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pla P, Orvoen S, Saudou F, David DJ, Humbert S (2014) Mood disorders in Huntington’s disease: from behavior to cellular and molecular mechanisms. Front Behav Neurosci 8:135. https://doi.org/10.3389/fnbeh.2014.00135

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jacobs M, Hart EP, van Zwet EW, Bentivoglio AR, Burgunder JM, Craufurd D, Reilmann R, Saft C, Roos RA, REGISTRY Investigators of the European Huntington’s Disease Network (2016) Progression of motor subtypes in Huntington’s disease: a 6-year follow-up study. J Neurol 263(10):2080–2085. https://doi.org/10.1007/s00415-016-8233-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Louis ED, Anderson KE, Moskowitz C, Thorne DZ, Marder K (2000) Dystonia-predominant adult-onset Huntington disease: association between motor phenotype and age of onset in adults. Arch Neurol 57(9):1326–1330. https://doi.org/10.1001/archneur.57.9.1326

    Article  CAS  PubMed  Google Scholar 

  45. Fusilli C, Migliore S, Mazza T, Consoli F, De Luca A, Barbagallo G, Ciammola A, Gatto EM, Cesarini M, Etcheverry JL, Parisi V, Al-Oraimi M, Al-Harrasi S, Al-Salmi Q, Marano M, Vonsattel JG, Sabatini U, Landwehrmeyer GB, Squitieri F (2018) Biological and clinical manifestations of juvenile Huntington’s disease: a retrospective analysis. Lancet Neurol 17(11):986–993. https://doi.org/10.1016/S1474-4422(18)30294-1

    Article  PubMed  Google Scholar 

  46. McCusker E (2010) Commentary: Huntington disease in a nonagenarian mistakenly diagnosed as normal pressure hydrocephalus. J Clin Neurosci 17(8):1068. https://doi.org/10.1016/j.jocn.2010.01.003

    Article  PubMed  Google Scholar 

  47. Biglan KM, Zhang Y, Long JD, Geschwind M, Kang GA, Killoran A, Lu W, McCusker E, Mills JA, Raymond LA, Testa C, Wojcieszek J, Paulsen JS, PREDICT-HD Investigators of the Huntington Study Group (2013) Refining the diagnosis of Huntington disease: the PREDICT-HD study. Front Aging Neurosci 5:12. https://doi.org/10.3389/fnagi.2013.00012

    Article  PubMed  PubMed Central  Google Scholar 

  48. Huntington Study Group PHAROS Investigators (2006) At risk for Huntington disease: the PHAROS (Prospective Huntington At Risk Observational Study) cohort enrolled. Arch Neurol 63:991–996. https://doi.org/10.1001/archneur.63.7.991

    Article  Google Scholar 

  49. Paulsen JS, Hayden M, Stout JC, Langbehn DR, Aylward E, Ross CA, Guttman M, Nance M, Kieburtz K, Oakes D, Shoulson I, Kayson E, Johnson S, Penziner E, Predict-HD Investigators of the Huntington Study Group (2006) Preparing for preventive clinical trials: the Predict-HD study. Arch Neurol 63:883–890. https://doi.org/10.1001/archneur.63.6.883

    Article  PubMed  Google Scholar 

  50. Bechtel N, Scahill RI, Rosas HD, Acharya T, van den Bogaard SJ, Jauffret C, Say MJ, Sturrock A, Johnson H, Onorato CE, Salat DH, Durr A, Leavitt BR, Roos RA, Landwehrmeyer GB, Langbehn DR, Stout JC, Tabrizi SJ, Reilmann R (2010) Tapping linked to function and structure in premanifest and symptomatic Huntington disease. Neurology 75(24):2150–2160. https://doi.org/10.1212/WNL.0b013e3182020123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stout JC, Paulsen JS, Queller S, Solomon AC, Whitlock KB, Campbell JC, Carlozzi N, Duff K, Beglinger LJ, Langbehn DR, Johnson SA, Biglan KM, Aylward EH (2011) Neurocognitive signs in prodromal Huntington disease. Neuropsychology 25(1):1–14. https://doi.org/10.1037/a0020937

    Article  PubMed  PubMed Central  Google Scholar 

  52. Epping EA, Kim JI, Craufurd D, Brashers-Krug TM, Anderson KE, McCusker E, Luther J, Long JD, Paulsen JS, PREDICT-HD Investigators and Coordinators of the Huntington Study Group (2016) Longitudinal psychiatric symptoms in prodromal Huntington’s disease: a decade of data. Am J Psychiatry 173(2):184–192. https://doi.org/10.1176/appi.ajp.2015.14121551

    Article  PubMed  Google Scholar 

  53. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6):559–577. https://doi.org/10.1097/00005072-198511000-00003

    Article  CAS  PubMed  Google Scholar 

  54. Aylward EH, Sparks BF, Field KM, Yallapragada V, Shpritz BD, Rosenblatt A, Brandt J, Gourley LM, Liang K, Zhou H, Margolis RL, Ross CA (2004) Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology 63(1):66–72. https://doi.org/10.1212/01.wnl.0000132965.14653.d1

    Article  CAS  PubMed  Google Scholar 

  55. Tabrizi SJ, Scahill RI, Owen G, Durr A, Leavitt BR, Roos RA, Borowsky B, Landwehrmeyer B, Frost C, Johnson H, Craufurd D, Reilmann R, Stout JC, Langbehn DR, Investigators TRACK-HD (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12(7):637–649. https://doi.org/10.1016/S1474-4422(13)70088-7

    Article  PubMed  Google Scholar 

  56. Reilmann R, Bohlen S, Klopstock T, Bender A, Weindl A, Saemann P, Auer DP, Ringelstein EB, Lange HW (2010) Tongue force analysis assesses motor phenotype in premanifest and symptomatic Huntington’s disease. Mov Disord 25(13):2195–2202. https://doi.org/10.1002/mds.23243

    Article  PubMed  Google Scholar 

  57. Reilmann R, Kirsten F, Quinn L, Henningsen H, Marder K, Gordon AM (2001) Objective assessment of progression in Huntington’s disease: a 3-year follow-up study. Neurology 57(5):920–924. https://doi.org/10.1212/wnl.57.5.920

    Article  CAS  PubMed  Google Scholar 

  58. Reilmann R, Bohlen S, Klopstock T, Bender A, Weindl A, Saemann P, Auer DP, Ringelstein EB, Lange HW (2010) Grasping premanifest Huntington’s disease—shaping new endpoints for new trials. Mov Disord 25(16):2858–2862. https://doi.org/10.1002/mds.23300

    Article  PubMed  Google Scholar 

  59. Reilmann R, Bohlen S, Kirsten F, Ringelstein EB, Lange HW (2011) Assessment of involuntary choreatic movements in Huntington’s disease—toward objective and quantitative measures. Mov Disord 26(12):2267–2273. https://doi.org/10.1002/mds.23816

    Article  PubMed  Google Scholar 

  60. Paulsen JS, Langbehn DR, Stout JC, Aylward E, Ross CA, Nance M, Guttman M, Johnson S, MacDonald M, Beglinger LJ, Duff K, Kayson E, Biglan K, Shoulson I, Oakes D, Hayden M, Predict-HD Investigators and Coordinators of the Huntington Study Group (2008) Detection of Huntington’s disease decades before diagnosis: the Predict-HD study. J Neurol Neurosurg Psychiatry 79(8):874–880. https://doi.org/10.1136/jnnp.2007.128728

    Article  CAS  PubMed  Google Scholar 

  61. Penney JB Jr, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH (1997) CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann Neurol 41:689–692. https://doi.org/10.1002/ana.410410521

    Article  PubMed  Google Scholar 

  62. Michell AW, Goodman AO, Silva AH, Lazic SE, Morton AJ, Barker RA (2008) Hand tapping: a simple, reproducible, objective marker of motor dysfunction in Huntington’s disease. J Neurol 255(8):1145–1152. https://doi.org/10.1007/s00415-008-0859-x

    Article  CAS  PubMed  Google Scholar 

  63. Saft C, Andrich J, Meisel NM, Przuntek H, Müller T (2006) Assessment of simple movements reflects impairment in Huntington’s disease. Mov Disord 21(8):1208–1212. https://doi.org/10.1002/mds.20939

    Article  PubMed  Google Scholar 

  64. Reilmann R, Rouzade-Dominguez ML, Saft C, Süssmuth SD, Priller J, Rosser A, Rickards H, Schöls L, Pezous N, Gasparini F, Johns D, Landwehrmeyer GB, Gomez-Mancilla B (2015) A randomized, placebo-controlled trial of AFQ056 for the treatment of chorea in Huntington’s disease. Mov Disord 30(3):427–431. https://doi.org/10.1002/mds.26174

    Article  CAS  PubMed  Google Scholar 

  65. Reilmann R, Rumpf S, Beckmann H, Koch R, Ringelstein EB, Lange HW (2012) Huntington’s disease: objective assessment of posture—a link between motor and functional deficits. Mov Disord 27(4):555–559. https://doi.org/10.1002/mds.24908

    Article  PubMed  Google Scholar 

  66. Reyes A, Salomonczyk D, Teo WP, Medina LD, Bartlett D, Pirogovsky-Turk E, Zaenker P, Bloom JC, Simmons RW, Ziman M, Gilbert PE, Cruickshank T (2018) Computerised dynamic posturography in premanifest and manifest individuals with Huntington’s disease. Sci Rep 8(1):14615. https://doi.org/10.1038/s41598-018-32924-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rao AK, Muratori L, Louis ED, Moskowitz CB, Marder KS (2008) Spectrum of gait impairments in presymptomatic and symptomatic Huntington’s disease. Mov Disord 23(8):1100–1107. https://doi.org/10.1002/mds.21987

    Article  PubMed  Google Scholar 

  68. Rao AK, Mazzoni P, Wasserman P, Marder K (2011) Longitudinal change in gait and motor function in pre-manifest Huntington’s disease. PLoS Curr 3:RRN1268. https://doi.org/10.1371/currents.RRN1268

    Article  PubMed  PubMed Central  Google Scholar 

  69. Andrzejewski KL, Dowling AV, Stamler D, Felong TJ, Harris DA, Wong C, Cai H, Reilmann R, Little MA, Gwin JT, Biglan KM, Dorsey ER (2016) Wearable sensors in Huntington disease: a pilot study. J Huntingtons Dis 5(2):199–206. https://doi.org/10.3233/JHD-160197

    Article  PubMed  Google Scholar 

  70. Adams JL, Dinesh K, Xiong M, Tarolli CG, Sharma S, Sheth N, Aranyosi AJ, Zhu W, Goldenthal S, Biglan KM, Dorsey ER, Sharma G (2017) Multiple wearable sensors in Parkinson and Huntington disease individuals: a pilot study in clinic and at home. Digit Biomark 1(1):52–63. https://doi.org/10.1159/000479018

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tortelli R, Simillion C, Lipsmeier F, Kilchenmann T, Rodrigues FB, Byrne LM, Bamdadian A, Gossens C, Schobel S, Lindemann M, Wild E (2020) The Digital-HD study: smartphone-based remote testing to assess cognitive and motor symptoms in Huntington’s disease. [Abstract]. Neurology 94(15 Supplement):1816

    Google Scholar 

  72. Simillion C, Lipsmeier F, Bamdadian A, Smith A, Schobel SA, Tortelli R, Rodrigues FB, Byrne LM, Wild E, Lindemann M (2020) Application of a digital monitoring platform to track severity and progression in Huntington’s disease. Poster. In: 10th European Conference on Rare Diseases & Orphan Products. Virtual

    Google Scholar 

  73. Lipsmeier F, Simillion C, Bamdadian A, Smith A, Schobel S, Czech C, Gossens C, Weydt P, Wild E, Lindemann M (2019) Preliminary reliability and validity of a novel digital biomarker smartphone application to assess cognitive and motor symptoms in Huntington’s disease (HD) [Abstract]. (P1.8-042). Neurology 92(15 Supplement):P1.8-042

    Google Scholar 

  74. Roberts B (2020) Digitalization and personalized health care. https://www.roche.com/dam/jcr:61545ef8-94ee-4b3b-8084-c21505d09cd9/en/irp20190916_digitalisation.pdf. Accessed 25 June

  75. Waddell EM, Dinesh K, Spear KL, Tarolli CG, Elson MJ, Curtis MJ, Mitten DJ, Sharma G, Dorsey ER, Adams JL (2019) GEORGE®—The first smartphone application for Huntington disease—Pilot study. [Abstract]. Neurotherapeutics 16:1350–1390

    Article  Google Scholar 

  76. Lauraitis A, Maskeliunas R, Damasevicius R, Polap D, Wozniak M (2019) A smartphone application for automated decision support in cognitive task based evaluation of central nervous system motor disorders. IEEE J Biomed Health Inform 23(5):1865–1876. https://doi.org/10.1109/JBHI.2019.2891729

    Article  PubMed  Google Scholar 

  77. Dorsey ER, Papapetropoulos S, Xiong M, Kieburtz K (2017) The First Frontier: digital biomarkers for neurodegenerative disorders. Digit Biomark 1(1):6–13. https://doi.org/10.1159/000477383

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gordon MF, Grachev ID, Mazeh I, Dolan Y, Reilmann R, Loupe PS, Fine S, Navon-Perry L, Gross N, Papapetropoulos S, Savola JM, Hayden MR (2019) Quantification of motor function in Huntington disease patients using wearable sensor devices. Digit Biomark 3(3):103–115. https://doi.org/10.1159/000502136

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nasir J, Floresco SB, O’Kusky JR, Diewert VM, Richman JM, Zeisler J, Borowski A, Marth JD, Phillips AG, Hayden MR (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81(5):811–823. https://doi.org/10.1016/0092-8674(95)90542-1

    Article  CAS  PubMed  Google Scholar 

  80. Reiner A, Dragatsis I, Zeitlin S, Goldowitz D (2003) Wild-type huntingtin plays a role in brain development and neuronal survival. Mol Neurobiol 28(3):259–276. https://doi.org/10.1385/MN:28:3:259

    Article  CAS  PubMed  Google Scholar 

  81. Harjes P, Wanker EE (2003) The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci 28(8):425–433. https://doi.org/10.1016/S0968-0004(03)00168-3

    Article  CAS  PubMed  Google Scholar 

  82. Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC (2017) Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb Perspect Med 7(7):a024240. https://doi.org/10.1101/cshperspect.a024240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brandstaetter H, Kruppa AJ, Buss F (2014) Huntingtin is required for ER-to-Golgi transport and for secretory vesicle fusion at the plasma membrane. Dis Model Mech 7(12):1335–1340. https://doi.org/10.1242/dmm.017368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, Conti L, MacDonald ME, Friedlander RM, Silani V, Hayden MR, Timmusk T, Sipione S, Cattaneo E (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493–498. https://doi.org/10.1126/science.1059581

    Article  CAS  PubMed  Google Scholar 

  85. Wetzel R (2012) Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol 421:466–449. https://doi.org/10.1016/j.jmb.2012.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Trottier Y, Devys D, Imbert G, Saudou F, An I, Lutz Y, Weber C, Agid Y, Hirsch EC, Mandel JL (1995) Cellular localization of the Huntington’s disease protein and discrimination of the normal and mutated form. Nat Genet 10(1):104–110. https://doi.org/10.1038/ng0595-104

    Article  CAS  PubMed  Google Scholar 

  87. Massai L, Petricca L, Magnoni L, Rovetini L, Haider S, Andre R, Tabrizi SJ, Süssmuth SD, Landwehrmeyer BG, Caricasole A, Pollio G, Bernocco S (2013) Development of an ELISA assay for the quantification of soluble huntingtin in human blood cells. BMC Biochem 14:34. https://doi.org/10.1186/1471-2091-14-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Corey-Bloom J, Haque AS, Park S, Nathan AS, Baker RW, Thomas EA (2018) Salivary levels of total huntingtin are elevated in Huntington’s disease patients. Sci Rep 8(1):7371. https://doi.org/10.1038/s41598-018-25095-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  CAS  PubMed  Google Scholar 

  90. Moscovitch-Lopatin M, Weiss A, Rosas HD, Ritch J, Doros G, Kegel KB, Difiglia M, Kuhn R, Bilbe G, Paganetti P, Hersch S (2010) Optimization of an HTRF assay for the detection of soluble mutant huntingtin in human buffy coats: a potential biomarker in blood for Huntington disease. PLoS Curr 2:RRN1205. https://doi.org/10.1371/currents.RRN1205

    Article  PubMed  PubMed Central  Google Scholar 

  91. Moscovitch-Lopatin M, Goodman RE, Eberly S, Ritch JJ, Rosas HD, Matson S, Matson W, Oakes D, Young AB, Shoulson I, Hersch SM, Huntington Study Group PHAROS Investigators (2013) HTRF analysis of soluble huntingtin in PHAROS PBMCs. Neurology 81(13):1134–1140. https://doi.org/10.1212/WNL.0b013e3182a55ede

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weiss A, Träger U, Wild EJ, Grueninger S, Farmer R, Landles C, Scahill RI, Lahiri N, Haider S, Macdonald D, Frost C, Bates GP, Bilbe G, Kuhn R, Andre R, Tabrizi SJ (2012) Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J Clin Invest 122(10):3731–3736. https://doi.org/10.1172/JCI64565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wild EJ, Boggio R, Langbehn D, Robertson N, Haider S, Miller JR, Zetterberg H, Leavitt BR, Kuhn R, Tabrizi SJ, Macdonald D, Weiss A (2015) Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Invest 125(5):1979–1986. https://doi.org/10.1172/JCI80743

    Article  PubMed  PubMed Central  Google Scholar 

  94. Macdonald D, Tessari MA, Boogaard I, Smith M, Pulli K, Szynol A, Albertus F, Lamers MB, Dijkstra S, Kordt D, Reindl W, Herrmann F, McAllister G, Fischer DF, Munoz-Sanjuan I (2014) Quantification assays for total and polyglutamine-expanded huntingtin proteins. PLoS One 9(5):e96854. https://doi.org/10.1371/journal.pone.0096854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weiss A, Abramowski D, Bibel M, Bodner R, Chopra V, DiFiglia M, Fox J, Kegel K, Klein C, Grueninger S, Hersch S, Housman D, Régulier E, Rosas HD, Stefani M, Zeitlin S, Bilbe G, Paganetti P (2009) Single-step detection of mutant huntingtin in animal and human tissues: a bioassay for Huntington’s disease. Anal Biochem 395(1):8–15. https://doi.org/10.1016/j.ab.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  96. Wild EJ, Boggio R, Langbehn D, Robertson N, Haider S, Miller JR, Zetterberg H, Leavitt BR, Kuhn R, Tabrizi SJ, Macdonald D, Weiss A (2015) Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J Clin Investig 125(5):1979–1986. https://doi.org/10.1172/JCI80743

    Article  PubMed  PubMed Central  Google Scholar 

  97. Southwell AL, Smith SE, Davis TR, Caron NS, Villanueva EB, Xie Y, Collins JA, Ye ML, Sturrock A, Leavitt BR, Schrum AG, Hayden MR (2015) Ultrasensitive measurement of huntingtin protein in cerebrospinal fluid demonstrates increase with Huntington disease stage and decrease following brain huntingtin suppression. Sci Rep 5:12166. https://doi.org/10.1038/srep12166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fodale V, Boggio R, Daldin M, Cariulo C, Spiezia MC, Byrne LM, Leavitt BR, Wild EJ, Macdonald D, Weiss A, Bresciani A (2017) Validation of ultrasensitive mutant huntingtin detection in human cerebrospinal fluid by single molecule counting immunoassay. J Huntingtons Dis 6(4):349–361. https://doi.org/10.3233/JHD-170269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Byrne LM, Rodrigues FB, Johnson EB, Wijeratne PA, De Vita E, Alexander DC, Palermo G, Czech C, Schobel S, Scahill RI, Heslegrave A, Zetterberg H, Wild EJ (2018) Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease. Sci Transl Med 10(458):eaat7108. https://doi.org/10.1126/scitranslmed.aat7108

    Article  CAS  PubMed  Google Scholar 

  100. Hoffman PN, Lasek RJ (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol 66(2):351–366. https://doi.org/10.1083/jcb.66.2.351

    Article  CAS  PubMed  Google Scholar 

  101. Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health and disease. Science 279(5350):514–519. https://doi.org/10.1126/science.279.5350.514

    Article  CAS  PubMed  Google Scholar 

  102. Petzold A (2005) Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. Neurol Sci 233(1-2):183–198. https://doi.org/10.1016/j.jns.2005.03.015

    Article  CAS  Google Scholar 

  103. Petzold A, Altintas A, Andreoni L, Bartos A, Berthele A, Blankenstein MA, Buee L, Castellazzi M, Cepok S, Comabella M, Constantinescu CS, Deisenhammer F, Deniz G, Erten G, Espiño M, Fainardi E, Franciotta D, Freedman MS, Giedraitis V, Gilhus NE, Giovannoni G, Glabinski A, Grieb P, Hartung HP, Hemmer B, Herukka SK, Hintzen R, Ingelsson M, Jackson S, Jacobsen S, Jafari N, Jalosinski M, Jarius S, Kapaki E, Kieseier BC, Koel-Simmelink MJ, Kornhuber J, Kuhle J, Kurzepa J, Lalive PH, Lannfelt L, Lehmensiek V, Lewczuk P, Livrea P, Marnetto F, Martino D, Menge T, Norgren N, Papuć E, Paraskevas GP, Pirttilä T, Rajda C, Rejdak K, Ricny J, Ripova D, Rosengren L, Ruggieri M, Schraen S, Shaw G, Sindic C, Siva A, Stigbrand T, Stonebridge I, Topcular B, Trojano M, Tumani H, Twaalfhoven HA, Vécsei L, Van Pesch V, Vanderstichele H, Vedeler C, Verbeek MM, Villar LM, Weissert R, Wildemann B, Yang C, Yao K, Teunissen CE (2010) Neurofilament ELISA validation. J Immunol Methods 352(1-2):23–31. https://doi.org/10.1016/j.jim.2009.09.014

    Article  CAS  PubMed  Google Scholar 

  104. Gaiottino J, Norgren N, Dobson R, Topping J, Nissim A, Malaspina A, Bestwick JP, Monsch AU, Regeniter A, Lindberg RL, Kappos L, Leppert D, Petzold A, Giovannoni G, Kuhle J (2013) Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One 8(9):e75091. https://doi.org/10.1371/journal.pone.0075091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius Å, Liman V, Norgren N, Blennow K, Zetterberg H (2016) Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med 54(10):1655–1661. https://doi.org/10.1515/cclm-2015-1195

    Article  CAS  PubMed  Google Scholar 

  106. Gisslén M, Price RW, Andreasson U, Norgren N, Nilsson S, Hagberg L, Fuchs D, Spudich S, Blennow K, Zetterberg H (2015) Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3:135–140. https://doi.org/10.1016/j.ebiom.2015.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lewczuk P, Ermann N, Andreasson U, Schultheis C, Podhorna J, Spitzer P, Maler JM, Kornhuber J, Blennow K, Zetterberg H (2018) Plasma neurofilament light as a potential biomarker of neurodegeneration in Alzheimer’s disease. Alzheimers Res Ther 10(1):71. https://doi.org/10.1186/s13195-018-0404-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sampedro F, Pérez-González R, Martínez-Horta S, Marín-Lahoz J, Pagonabarraga J, Kulisevsky J (2020) Serum neurofilament light chain levels reflect cortical neurodegeneration in de novo Parkinson’s disease. Parkinsonism Relat Disord 74:43–49. https://doi.org/10.1016/j.parkreldis.2020.04.009

    Article  PubMed  Google Scholar 

  109. Cai L, Huang J (2018) Neurofilament light chain as a biological marker for multiple sclerosis: a meta-analysis study. Neuropsychiatr Dis Treat 14:2241–2254. https://doi.org/10.2147/NDT.S173280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kuhle J, Kropshofer H, Haering DA, Kundu U, Meinert R, Barro C, Dahlke F, Tomic D, Leppert D, Kappos L (2019) Blood neurofilament light chain as a biomarker of MS disease activity and treatment response. Neurology 92(10):e1007–e1015. https://doi.org/10.1212/WNL.0000000000007032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Olsson B, Alberg L, Cullen NC, Michael E, Wahlgren L, Kroksmark AK, Rostasy K, Blennow K, Zetterberg H, Tulinius M (2019) NFL is a marker of treatment response in children with SMA treated with nusinersen. J Neurol 266(9):2129–2136. https://doi.org/10.1007/s00415-019-09389-8

    Article  PubMed  PubMed Central  Google Scholar 

  112. Byrne LM, Rodrigues FB, Blennow K, Durr A, Leavitt BR, Roos RAC, Scahill RI, Tabrizi SJ, Zetterberg H, Langbehn D, Wild EJ (2017) Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: a retrospective cohort analysis. Lancet Neurol 16(8):601–609. https://doi.org/10.1016/S1474-4422(17)30124-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Niemelä V, Landtblom AM, Blennow K, Sundblom J (2017) Tau or neurofilament light—which is the more suitable biomarker for Huntington’s disease? PLoS One 12(2):e0172762. https://doi.org/10.1371/journal.pone.0172762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Constantinescu R, Romer M, Oakes D, Rosengren L, Kieburtz K (2009) Levels of the light subunit of neurofilament triplet protein in cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord 15(3):245–248. https://doi.org/10.1016/j.parkreldis.2008.05.012

    Article  PubMed  Google Scholar 

  115. Vinther-Jensen T, Börnsen L, Budtz-Jørgensen E, Ammitzbøll C, Larsen IU, Hjermind LE, Sellebjerg F, Nielsen JE (2016) Selected CSF biomarkers indicate no evidence of early neuroinflammation in Huntington disease. Neurol Neuroimmunol Neuroinflamm 3(6):e287. https://doi.org/10.1212/NXI.0000000000000287

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rodrigues FB, Byrne LM, McColgan P, Robertson N, Tabrizi SJ, Zetterberg H, Wild EJ (2016) Cerebrospinal fluid inflammatory biomarkers reflect clinical severity in Huntington’s disease. PLoS One 11(9):e0163479. https://doi.org/10.1371/journal.pone.0163479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Johnson EB, Byrne LM, Gregory S, Rodrigues FB, Blennow K, Durr A, Leavitt BR, Roos RA, Zetterberg H, Tabrizi SJ, Scahill RI, Wild EJ, TRACK-HD Study Group (2018) Neurofilament light protein in blood predicts regional atrophy in Huntington disease. Neurology 90(8):e717–e723. https://doi.org/10.1212/WNL.0000000000005005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rodrigues FB, Byrne LM, Tortelli R, Johnson EB, Wijeratne PA, Arridge M, De Vita E, Ghazaleh N, Houghton R, Furby H, Alexander DC, Tabrizi SJ, Schobel S, Scahill RI, Heslegrave A, Zetterberg H, Wild EJ (2020) Longitudinal dynamics of mutant huntingtin and neurofilament light in Huntington’s disease: the prospective HD-CSF study. (article in pre-print). https://doi.org/10.1101/2020.03.31.20045260

  119. Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C, Barker RA, Blair NF, Craufurd D, Priller J, Rickards H, Rosser A, Kordasiewicz HB, Czech C, Swayze EE, Norris DA, Baumann T, Gerlach I, Schobel SA, Paz E, Smith AV, Bennett CF, Lane RM, Phase 1–2a IONIS-HTTRx Study Site Teams (2019) Targeting huntingtin expression in patients with Huntington’s disease. N Engl J Med 380(24):2307–2316. https://doi.org/10.1056/NEJMoa1900907

    Article  CAS  PubMed  Google Scholar 

  120. Ventimiglia R, Mather PE, Jones BE, Lindsay RM (1995) The neurotrophins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. Eur J Neurosci 7(2):213–222. https://doi.org/10.1111/j.1460-9568.1995.tb01057.x

    Article  CAS  PubMed  Google Scholar 

  121. Canals JM, Checa N, Marco S, Akerud P, Michels A, Pérez-Navarro E, Tolosa E, Arenas E, Alberch J (2001) Expression of brain-derived neurotrophic factor in cortical neurons is regulated by striatal target area. J Neurosci 21(1):117–124. https://doi.org/10.1523/JNEUROSCI.21-01-00117.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gauthier LR, Charrin BC, Borrell-Pagès M, Dompierre JP, Rangone H, Cordelières FP, De Mey J, MacDonald ME, Lessmann V, Humbert S, Saudou F (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118(1):127–138. https://doi.org/10.1016/j.cell.2004.06.018

    Article  CAS  PubMed  Google Scholar 

  123. Tasset I, Sánchez-López F, Agüera E, Fernández-Bolaños R, Sánchez FM, Cruz-Guerrero A, Gascón-Luna F, Túnez I (2012) NGF and nitrosative stress in patients with Huntington’s disease. J Neurol Sci 315(1-2):133–136. https://doi.org/10.1016/j.jns.2011.12.014

    Article  CAS  PubMed  Google Scholar 

  124. Ciammola A, Sassone J, Cannella M, Calza S, Poletti B, Frati L, Squitieri F, Silani V (2007) Low brain-derived neurotrophic factor (BDNF) levels in serum of Huntington’s disease patients. Am J Med Genet 144B(4):574–577. https://doi.org/10.1002/ajmg.b.30501

    Article  CAS  PubMed  Google Scholar 

  125. Squitieri F, Cannella M, Simonelli M, Sassone J, Martino T, Venditti E, Ciammola A, Colonnese C, Frati L, Ciarmiello A (2009) Distinct brain volume changes correlating with clinical stage, disease progression rate, mutation size, and age at onset prediction as early biomarkers of brain atrophy in Huntington’s disease. CNS Neurosci Ther 15(1):1–11. https://doi.org/10.1111/j.1755-5949.2008.00068.x

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zuccato C, Marullo M, Vitali B, Tarditi A, Mariotti C, Valenza M, Lahiri N, Wild EJ, Sassone J, Ciammola A, Bachoud-Lèvi AC, Tabrizi SJ, Di Donato S, Cattaneo E (2011) Brain-derived neurotrophic factor in patients with Huntington’s disease. PLoS One 6(8):e22966. https://doi.org/10.1371/journal.pone.0022966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang R, Ross CA, Cai H, Cong WN, Daimon CM, Carlson OD, Egan JM, Siddiqui S, Maudsley S, Martin B (2014) Metabolic and hormonal signatures in pre-manifest and manifest Huntington’s disease patients. Front Physiol 5:231. https://doi.org/10.3389/fphys.2014.00231

    Article  PubMed  PubMed Central  Google Scholar 

  128. Gutierrez A, Corey-Bloom J, Thomas EA, Desplats P (2020) Evaluation of biochemical and epigenetic measures of peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in Huntington’s disease patients. Front Mol Neurosci 12:335. https://doi.org/10.3389/fnmol.2019.00335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ou ZA, Byrne LM, Rodrigues FB, Tortelli R, Johnson EB, Foiani MS, Arridge M, De Vita E, Scahill RI, Heslegrave A, Zetterberg H, Wild EJ (2019) Brain-derived neurotrophic factor in cerebrospinal fluid and plasma as a potential biomarker for Huntington’s disease. [Abstract]. Neurotherapeutics 16(4):1373–1374

    Google Scholar 

  130. Zigmond AS, Snaith RP (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand 67(6):361–370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x

    Article  CAS  PubMed  Google Scholar 

  131. Tirassa P, Iannitelli A, Sornelli F, Cirulli F, Mazza M, Calza A, Alleva E, Branchi I, Aloe L, Bersani G, Pacitti F (2012) Daily serum and salivary BDNF levels correlate with morning-evening personality type in women and are affected by light therapy. Riv Psichiatr 47(6):527–534. https://doi.org/10.1708/1178.13059

    Article  PubMed  Google Scholar 

  132. Moreira A, Aoki MS, de Arruda AFS, Machado DGDS, Elsangedy HM, Okano AH (2018) Salivary BDNF and cortisol responses during high-intensity exercise and official basketball matches in sedentary individuals and elite players. J Hum Kinet 65:139–149. https://doi.org/10.2478/hukin-2018-0040

    Article  PubMed  PubMed Central  Google Scholar 

  133. Tsukinoki K, Saruta J, Sasaguri K, Miyoshi Y, Jinbu Y, Kusama M, Sato S, Watanabe Y (2006) Immobilization stress induces BDNF in rat submandibular glands. J Dent Res 85(9):844–848. https://doi.org/10.1177/154405910608500913

    Article  CAS  PubMed  Google Scholar 

  134. Mitoma M, Yoshimura R, Sugita A, Umene W, Hori H, Nakano H, Ueda N, Nakamura J (2008) Stress at work alters serum brain-derived neurotrophic factor (BDNF) levels and plasma 3-methoxy-4-hydroxyphenylglycol (MHPG) levels in healthy volunteers: BDNF and MHPG as possible biological markers of mental stress? Prog Neuropsychopharmacol Biol Psychiatry 32(3):679–685. https://doi.org/10.1016/j.pnpbp.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  135. Lommatzsch M, Niewerth A, Klotz J, Schulte-Herbrüggen O, Zingler C, Schuff-Werner P, Virchow JC (2007) Platelet and plasma BDNF in lower respiratory tract infections of the adult. Respir Med 101(7):1493–1499. https://doi.org/10.1016/j.rmed.2007.01.003

    Article  PubMed  Google Scholar 

  136. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109(2):143–148. https://doi.org/10.1016/s0165-1781(02)00005-7

    Article  CAS  PubMed  Google Scholar 

  137. Kobayashi K, Shimizu E, Hashimoto K, Mitsumori M, Koike K, Okamura N, Koizumi H, Ohgake S, Matsuzawa D, Zhang L, Nakazato M, Iyo M (2005) Serum brain-derived neurotrophic factor (BDNF) levels in patients with panic disorder: as a biological predictor of response to group cognitive behavioral therapy. Prog Neuropsychopharmacol Biol Psychiatry 29(5):658–663. https://doi.org/10.1016/j.pnpbp.2005.04.010

    Article  CAS  PubMed  Google Scholar 

  138. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12(6):609–622. https://doi.org/10.1016/S1474-4422(13)70090-5

    Article  CAS  PubMed  Google Scholar 

  139. Fernández-Nogales M, Cabrera JR, Santos-Galindo M, Hoozemans JJ, Ferrer I, Rozemuller AJ, Hernández F, Avila J, Lucas JJ (2014) Huntington’s disease is a four-repeat tauopathy with tau nuclear rods. Nat Med 20(8):881–885. https://doi.org/10.1038/nm.3617

    Article  CAS  PubMed  Google Scholar 

  140. Liu P, Smith BR, Huang ES, Mahesh A, Vonsattel JPG, Petersen AJ, Gomez-Pastor R, Ashe KH (2019) A soluble truncated tau species related to cognitive dysfunction and caspase-2 is elevated in the brain of Huntington’s disease patients. Acta Neuropathol Commun 7(1):111. https://doi.org/10.1186/s40478-019-0764-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rodrigues FB, Byrne L, McColgan P, Robertson N, Tabrizi SJ, Leavitt BR, Zetterberg H, Wild EJ (2016) Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington’s disease. J Neurochem 139:22–25. https://doi.org/10.1111/jnc.13719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Constantinescu R, Romer M, Zetterberg H, Rosengren L, Kieburtz K (2011) Increased levels of total tau protein in the cerebrospinal fluid in Huntington’s disease. Parkinsonism Relat Disord 17(9):714–715. https://doi.org/10.1016/j.parkreldis.2011.06.010

    Article  PubMed  Google Scholar 

  143. Hanna J, Hossain GS, Kocerha J (2019) The potential for microRNA therapeutics and clinical research. Front Genet 10:478. https://doi.org/10.3389/fgene.2019.00478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. https://doi.org/10.1016/s0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  145. Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ (2008) A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis 29(3):438–445. https://doi.org/10.1016/j.nbd.2007.11.001

    Article  CAS  PubMed  Google Scholar 

  146. Hoss AG, Labadorf A, Latourelle JC, Kartha VK, Hadzi TC, Gusella JF, MacDonald ME, Chen JF, Akbarian S, Weng Z, Vonsattel JP, Myers RH (2015) miR-10b-5p expression in Huntington’s disease brain relates to age of onset and the extent of striatal involvement. BMC Med Genomics 8:10. https://doi.org/10.1186/s12920-015-0083-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Salzman DW (2019) Small RNA biomarkers for the early detection and monitoring of Huntington’s disease. In: 14th annual HD therapeutics conference, Palm Springs, California

    Google Scholar 

  148. Bithell A, Johnson R, Buckley NJ (2009) Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington’s disease. Biochem Soc Trans 37(Pt 6):1270–1275. https://doi.org/10.1042/BST0371270

    Article  CAS  PubMed  Google Scholar 

  149. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, Meyne J, Ratliff RL, Wu JR (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85(18):6622–6626. https://doi.org/10.1073/pnas.85.18.6622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361(9355):393–395. https://doi.org/10.1016/S0140-6736(03)12384-7

    Article  CAS  PubMed  Google Scholar 

  151. Scarabino D, Broggio E, Gambina G, Corbo RM (2017) Leukocyte telomere length in mild cognitive impairment and Alzheimer’s disease patients. Exp Gerontol 98:143–147. https://doi.org/10.1016/j.exger.2017.08.025

    Article  CAS  PubMed  Google Scholar 

  152. Martin-Ruiz C, Williams-Gray CH, Yarnall AJ, Boucher JJ, Lawson RA, Wijeyekoon RS, Barker RA, Kolenda C, Parker C, Burn DJ, Von Zglinicki T, Saretzki G (2020) Senescence and inflammatory markers for predicting clinical progression in Parkinson’s disease: the ICICLE-PD Study. J Parkinsons Dis 10(1):193–206. https://doi.org/10.3233/JPD-191724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Erusalimsky JD (2020) Oxidative stress, telomeres and cellular senescence: what non-drug interventions might break the link? Free Radic Biol Med 150:87–95. https://doi.org/10.1016/j.freeradbiomed.2020.02.008

    Article  CAS  PubMed  Google Scholar 

  154. Rai SN, Singh BK, Rathore AS, Zahra W, Keswani C, Birla H, Singh SS, Dilnashin H, Singh SP (2019) Quality control in Huntington’s disease: a therapeutic target. Neurotox Res 36(3):612–626. https://doi.org/10.1007/s12640-019-00087-x

    Article  CAS  PubMed  Google Scholar 

  155. Scarabino D, Veneziano L, Peconi M, Frontali M, Mantuano E, Corbo RM (2019) Leukocyte telomere shortening in Huntington’s disease. J Neurol Sci 396:2529. https://doi.org/10.1016/j.jns.2018.10.024

    Article  CAS  Google Scholar 

  156. Castaldo I, De Rosa M, Romano A, Zuchegna C, Squitieri F, Mechelli R, Peluso S, Borrelli C, Del Mondo A, Salvatore E, Vescovi LA, Migliore S, De Michele G, Ristori G, Romano S, Avvedimento EV, Porcellini A (2019) DNA damage signatures in peripheral blood cells as biomarkers in prodromal Huntington disease. Ann Neurol 85:296–301. https://doi.org/10.1002/ana.25393

    Article  CAS  PubMed  Google Scholar 

  157. Kota LN, Bharath S, Purushottam M, Moily NS, Sivakumar PT, Varghese M, Pal PK, Jain S (2015) Reduced telomere length in neurodegenerative disorders may suggest shared biology. J Neuropsychiatry Clin Neurosci 27:e92–e96. https://doi.org/10.1176/appi.neuropsych.13100240

    Article  PubMed  Google Scholar 

  158. Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293. https://doi.org/10.1146/annurev.pharmtox.010909.105654

    Article  CAS  PubMed  Google Scholar 

  159. Smith AV, Tabrizi SJ (2020) Therapeutic antisense targeting of huntingtin. DNA Cell Biol 39(2):154–158. https://doi.org/10.1089/dna.2019.5188

    Article  CAS  PubMed  Google Scholar 

  160. Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, Artates JW, Weiss A, Cheng SH, Shihabuddin LS, Hung G, Bennett CF, Cleveland DW (2012) Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron 74(6):1031–1044. https://doi.org/10.1016/j.neuron.2012.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Stanek LM, Yang W, Angus S, Sardi PS, Hayden MR, Hung GH, Bennett CF, Cheng SH, Shihabuddin LS (2013) Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington’s disease. J Huntingtons Dis 2:217–228. https://doi.org/10.3233/JHD-130057

    Article  CAS  PubMed  Google Scholar 

  162. Schobel S (2020) Preliminary results from a 15-month open-label extension study investigating tominersen (RG6042) huntingtin protein antisense oligonucleotide in adults with manifest Huntington’s disease. In: 15th Annual Huntington’s disease therapeutics conference, Palm Springs, California

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Killoran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Killoran, A. (2022). Biomarkers in Huntington’s Disease . In: Peplow, P.V., Martinez, B., Gennarelli, T.A. (eds) Neurodegenerative Diseases Biomarkers. Neuromethods, vol 173. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1712-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1712-0_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1711-3

  • Online ISBN: 978-1-0716-1712-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics