Skip to main content

Advertisement

Log in

Estimating wild boar density and rooting activity in a Mediterranean protected area

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

The mitigation of ecological/economic impacts of wild boar Sus scrofa is one of the most challenging issues in wildlife management worldwide. Monitoring population density and impact of wild boar is crucial to plan appropriate management actions to reduce its density, environmental impact and epidemiological risk, as well as to evaluate control effectiveness. In 2018–2019, we used plot-based faeces counts, coupled with specific estimates of daily defecation rates, to estimate wild boar density and rooting activity in natural/semi-natural habitats, in a Mediterranean protected area. Daily defecation rate was 6.7 faeces/individual, much lower than that of ruminants. We obtained estimates of 70.0–70.5 faeces/km2, corresponding to wild boar densities of c. 10.5 individuals/km2 (relative standard error: 18%) in both years. Low daily defecation rates and skewed distribution frequencies of wild boar faeces should be considered to plan surveys with an adequate sampling design and intensity. Faeces abundance and rooting activity peaked in ecotones, i.e. open areas at the interface of wood patches, whereas they did not differ between other habitat types, suggesting a fine-scale concordance between the two indicators. Long-term monitoring is needed to assess relationships between indicators of impact and abundance at a broad scale. Our work shows how to undertake simultaneously wild boar density estimates and impact assessment in natural environments, which is particularly important for protected areas and/or habitats of conservation concern across the globally distributed Mediterranean biome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acevedo P, Vicente J, Höfle U, Cassinello J, Ruiz-Fons F, Gortazar C (2007) Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiol Infect 135:519–527

    CAS  PubMed  Google Scholar 

  • Adams PJ, Fontaine JB, Huston RM, Fleming PA (2019) Quantifying efficacy of feral pig (Sus scrofa) population management. Wildlife Res 46:587–598

    Google Scholar 

  • Anderson SJ, Stone CP (1993) Snaring to control feral pigs Sus scrofa in a remote Hawaiian rain forest. Biol Conserv 63:195–201

    Google Scholar 

  • Ballari S, Barrios-Garcia MN (2014) A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mammal Rev 44:124–134

    Google Scholar 

  • Barabesi L, Franceschi S (2011) Sampling properties of spatial total estimators under tessellation stratified designs. Environmetrics 22:271–278

    Google Scholar 

  • Barabesi L, Franceschi S, Marcheselli M (2012) Properties of design-based estimation under stratified spatial sampling. Ann App Stat 6:210–228

    Google Scholar 

  • Barrios-Garcia M, Ballari S (2012) Impact of wild boar Sus scrofa in its introduced and native range: a review. Biol Invasions 14:2283–2300

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  • Beltrán-Beck B, Ballesteros C, Vicente J, de la Fuente J, Gortázar C (2012) Progress in oral vaccination against tuberculosis in its main wildlife reservoir in Iberia, the Eurasian wild boar. Vet Med Int 2012:978501

    Google Scholar 

  • Beltrán-Beck B, Romero B, Sevilla I, Barasona J, Garrido J, González Barrio D, Díez-Delgado I, Minguijón E, Casal C, Vicente J, Gortázar C, Aranaz A, Oral BCG (2014) Vaccine and an inactivated Mycobacterium bovis preparation for wild boar (Sus scrofa): adverse reactions, vaccine strain survival and uptake by non-target species. Clin Vaccine Immunol 21:12–20

    PubMed  PubMed Central  Google Scholar 

  • Bengsen AJ, Gentle MN, Mitchell JL, Pearson HE, Saunders GR (2014) Impacts and management of wild pigs Sus scrofa in Australia. Mammal Rev 44:135–147

    Google Scholar 

  • Boitani L, Trapanese P, Mattei L (1995) Demographic patterns of a wild boar (Sus scrofa L.) population in Tuscany. Italy Ibex 3:197–201

    Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    PubMed  Google Scholar 

  • Bolker BM, Skaug H, Magnusson A, Nielsen A (2012) Getting started with the glmm ADMB package. https://glmmadmb.r-forge.r-project.org. Accessed 1 Dec 2019.

  • Briedermann L (1985) Schwartzwild. Deutscher Landwirtschaftsverlag, Berlin

    Google Scholar 

  • Bueno CG, Alados CL, Gómez-García D, Barrio IC, García-González R (2009) Understanding the main factors in the extent and distribution of wild boar rooting on alpine grasslands. J Zool 279:195–202

    Google Scholar 

  • Bueno CG, Azorín J, Gómez-García D, Alados CL, Badía D (2013) Occurrence and intensity of wild boar disturbances, effects on the physical and chemical soil properties of alpine grasslands. Plant Soil 373:243–256

    CAS  Google Scholar 

  • Campbell D, Swanson GM, Sales J (2004) Comparing the precision and cost-effectiveness of faecal pellet group count methods. J Appl Ecol 41:1185–1196

    Google Scholar 

  • Chapman NG (2004) Faecal pellets of reeves’ muntjac, Muntiacus reevesi: defecation rate, decomposition period, size and weight. Eur J Wildl Res 50:141–145

    Google Scholar 

  • Chies D, Fantozzi PL, Francalacci S, Rigati R, Salleolini M (2017) Metodi topografici per la ricostruzione dettagliata della piezometria nelle aree costiere: il caso del Parco Regionale della Maremma (Toscana meridionale). Geologia Tecnica Ambientale 3(2017):51–66

    Google Scholar 

  • Cuevas MF, Mastrantonio L, Ojeda RA, Jaksic FM (2012) Effects of wild boar disturbance on vegetation and soil properties in the Monte Desert, Argentina. Mamm Biol 77:299–306

    Google Scholar 

  • Dardaillon M (1986) Seasonal variations in habitat selection and spatial distribution of wild boar (Sus scrofa) in the Camargue, Southern France. Behav Process 13:251–268

    CAS  Google Scholar 

  • Dardaillon M (1987) Seasonal feeding habits of the wild boar in a Mediterranean wetland, the Camargue (Southern France). Acta Theriol 32:389–401

    Google Scholar 

  • Dardaillon M (1989) Age-class influences on feeding choices of free-ranging wild boars (Sus scrofa). Can J Zool 67:2792–2796

    Google Scholar 

  • Delibes-Mateos M, Farfán MA, Olivero J, Márquez AL, Vargas JM (2009) Long-term changes in game species over a long period of transformation in the Iberian Mediterranean landscape. Environ Manage 43:1256–1268

    PubMed  Google Scholar 

  • Dinerstein E, Dublin HT (1982) Daily defecation rate of captive axis deer. J Wildl Manage 46:833–835

    Google Scholar 

  • Ebert C, Huckschlag D, Schulz HK, Hohmann U (2010) Can hair traps sample wild boar (Sus scrofa) randomly for the purpose of noninvasive population estimation? Eur J Wildl Res 56:583–590

    Google Scholar 

  • ENETWILD Consortium, Keuling O, Sange M, Acevedo P, Podgorski T, Smith G, Scandura M, Apollonio M, Ferroglio E, Body G, Vicente J (2018) Guidance on estimation of wild boar population abundance and density: methods, challenges, possibilities. EFSA Support Publ. https://doi.org/10.2903/sp.efsa.2018.EN-1449

    Article  Google Scholar 

  • Engeman RM, Massei G, Sage M, Gentle MN (2013) Monitoring wild pig populations: a review of methods. Environ Sci Pollut R 20:8077–8091

    CAS  Google Scholar 

  • Eycott A, Daleszczyk K, Drese J, Cantero AS, Pebre J, Gladys S (2013) Defecation rate in captive European bison, Bison bonasus. Acta Theriol 58:387–390

    PubMed  PubMed Central  Google Scholar 

  • Fattorini L (2006) Applying the Horvitz-Thompson criterion in complex designs: a computer-intensive perspective for estimating inclusion probabilities. Biometrika 93:269–278

    Google Scholar 

  • Fattorini L, Ferretti F, Pisani C, Sforzi A (2011) Two-stage estimation of ungulate abundance in Mediterranean areas using pellet group count. Environ Ecol Stat 18:291–314

    Google Scholar 

  • Ferretti F, Bertoldi G, Sforzi A, Fattorini L (2011) Roe and fallow deer: are they compatible neighbours? Eur J Wildl Res 57:775–783

    Google Scholar 

  • Ferretti F, Fattorini L, Sforzi A, Pisani C (2016) The use of faeces counts to estimate relative densities of wild boar in a Mediterranean area. Popul Ecol 58:329–334

    Google Scholar 

  • Ferretti F, Lovari S, Mancino V, Burrini L, Rossa M (2019a) Food habits of wolves and selection of wild ungulates in a prey-rich Mediterranean coastal area. Mamm Biol 99:199–127

    Google Scholar 

  • Ferretti F, Machetti A, Fattorini N, Boldorini U, Tonini L (2019b) Programma per la gestione delle popolazioni di Ungulati selvatici del Parco Regionale della Maremma. Ente Parco Regionale della Maremma, Alberese

    Google Scholar 

  • Ferretti F, Storer K, Coats J, Massei G (2015) Temporal and spatial patterns of defecation in wild boar. Wildlife Soc B 39:65–69

    Google Scholar 

  • Focardi S, Toso S, Pecchioli F (1996) The population modelling of fallow deer and wild boar in a Mediterranean ecosystem. Forest Ecol Manag 88:7–14

    Google Scholar 

  • Fournier-Chambrillon C, Maillard D, Fournier P (1995) Diet of the wild boar (Sus scrofa L.) inhabiting the Montpellier garrigue. J Mountain Ecol 3:174–179

    Google Scholar 

  • Franzetti B, Ronchi F, Marini F, Scacco M, Calmanti R, Calabrese A, Aragno P, Montanaro P, Focardi S (2012) Nocturnal line transect sampling of wild boar (Sus scrofa) in a Mediterranean forest: long-term comparison with capture–mark–resight population estimates. Eur J Wildl Res 58:385–402

    Google Scholar 

  • Gee RW (2002) Feral pigs - the time bomb. Aust Vet J 80:96

    CAS  PubMed  Google Scholar 

  • Genov PV, Focardi S, Morimando F, Scillitani L, Ahmed A (2017) Ecological impact of wild boar in natural ecosystems. In: Melletti M, Meijaard E (eds) Ecology, conservation and management of wild pigs and peccaries. Cambridge University Press, Cambridge, pp 404–419

    Google Scholar 

  • Giménez-Anaya A, Herrero J, Rosell C, Couto S, García-Serrano A (2008) Food habits of wild boars (Sus scrofa) in a Mediterranean coastal wetland. Wetlands 28:197–203

    Google Scholar 

  • Gortázar C, Ferroglio E, Höle U, Frölich K, Vicente J (2007) Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res 53:241–256

    Google Scholar 

  • Grafström A, Tillé Y (2013) Doubly balanced spatial sampling with spreading and restitution of auxiliary totals. Environmetrics 24:120–131

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Herrero J, Couto S, Rosell C, Arias P (2004) Preliminary data on the diet of wild boar living in a Mediterranean coastal wetland. Galemys 16:115–123

    Google Scholar 

  • Herrero J, García-Serrano A, García-González R (2008) Reproductive and demographic parameters in two Iberian wild boar Sus scrofa populations. Acta Theriol 53:355–364

    Google Scholar 

  • Herrero J, Irizar I, Laskurain NA, García-Serrano A, García-González R (2005) Fruits and roots: wild boar foods during the cold season in the southwestern Pyrenees. Italian J Zool 72:49–52

    Google Scholar 

  • Hone J (1995) Spatial and temporal aspect of vertebrate pest damage with emphasis on feral pigs. J Appl Ecol 32:311–319

    Google Scholar 

  • Hone J (2002) Feral pigs in Namadgi National Park, Australia: dynamics, impacts and management. Biol Conserv 105:231–242

    Google Scholar 

  • Hone J (2012) Applied population and community ecology: the case of feral pigs in Australia. Wiley-Blackwell, West Sussex

    Google Scholar 

  • Hone J, Martin W (1998) A study of dung decay and plot size for surveying feral pigs using dung counts. Wildl Res 25:255–260

    Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363

    Google Scholar 

  • Keuling O, Stier N, Roth M (2008) Annual and seasonal space use of different age classes of female wild boar Sus scrofa L. Eur J Wildl Res 54:403–412

    Google Scholar 

  • Keuling O, Stier N, Roth M (2009) Commuting, shifting or remaining? Different spatial utilisation patterns of wild boar Sus scrofa L. in forest and field crops during summer. Mamm Biol 74:145–152

    Google Scholar 

  • Koda R, Agetsuma N, Agetsuma-Yanagihara Y, Tsujino R, Fujita N (2011) A proposal of the method of deer density estimate without fecal decomposition rate: a case study of fecal accumulation rate technique in Japan. Ecol Res 26:227–231

    Google Scholar 

  • Massei G, Bacon P, Genov PV (1998) Fallow deer and wild boar pellet group disappearance in a Mediterranean area. J Wildl Manage 62:1086–1094

    Google Scholar 

  • Massei G, Coats J, Lambert MS, Pietravalle S, Gill R, Cowan D (2018) Camera traps and activity signs to estimate wild boar density and derive abundance indices. Pest Manag Sci 74:853–860

    CAS  PubMed  Google Scholar 

  • Massei G, Genov P (1995) Preliminary analysis of food availability and habitat use by the wild boar in a Mediterranean area. Ibex 3:168–170

    Google Scholar 

  • Massei G, Genov PV (1998) Fallow deer (Dama dama) winter defecation rate in a Mediterranean area. J Zool 245:209–210

    Google Scholar 

  • Massei G, Genov PV (2004) The environmental impact of wild boar. Galemys 16:135–145

    Google Scholar 

  • Massei G, Genov PV, Staines BW (1996) Diet, food availability and reproduction of wild boar in a Mediterranean coastal area. Acta Theriol 41:307–320

    Google Scholar 

  • Massei G, Genov PV, Staines BW, Gorman ML (1997) Mortality of wild boar, Sus scrofa, in a Mediterranean area in relation to sex and age. J Zool 242:394–400

    Google Scholar 

  • Massei G, Kindberg J, Licoppe A, Gacic D, Šprem N, Kamler J, Baubet E, Hohmann U, Monaco A, Ozolins J, Cellina S, Podgorski T, Fonseca C, Markov N, Pokorny B, Rosell C, Nahlik A (2015) Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag Sci 71:492–500

    CAS  Google Scholar 

  • Massei G, Roy S, Bunting R (2011) Too many hogs? A review of methods to mitigate impact by wild boar and feral pigs. Hum-Wildl Interact 5:79–99

    Google Scholar 

  • Mayle BA, Peace AJ, Gill RMA (1999) How many deer? A field guide to estimating deer population size. Forestry Commission, Edinburgh

    Google Scholar 

  • McLoughlin PD, Gaillard J-M, Boyce MS, Bonenfant C, Messier F, Duncan P, Delorme D, Moorter B, Said S, Klein F (2007) Lifetime reproductive and composition of the home range in a large herbivore. Ecology 88:3192–3201

    CAS  PubMed  Google Scholar 

  • Melini D, Agrillo E, Ferretti F, Tonelli L (2019) Piano di gestione della ZSC/ZPS IT51A0016 Monti dell’Uccellina. Ente Parco Regionale della Maremma, Alberese

    Google Scholar 

  • Mencagli M, Stefanini P (2008) Carta della vegetazione per il Piano del Parco Regionale della Maremma. Ente Parco Regionale della Maremma, Alberese

    Google Scholar 

  • Merta D, Bobek B, Albrycht M, Furtek J (2015) The age structure and sex ratio in wild boar (Sus scrofa) populations as determined by observations of free-roaming populations and by harvests of collective hunts in southern Poland. Eur J Wildl Res 61:167–170

    Google Scholar 

  • Minder I (2006) Adaptive parameters of the diet of roe deer in a coastal Mediterranean area. Ph.D. thesis, University of Siena

  • Mitchell B, Rowe JJ, Ratcliffe P, Hinge M (1985) Defecation frequency in Roe deer (Capreolus capreolus) in relation to the accumulation rates of faecal deposits. J Zool 207:1–7

    Google Scholar 

  • Miyashita T, Suzuki M, Ando D, Fujita G, Ochiai K, Asada M (2008) Forest edge creates small-scale variation in reproductive rate of sika deer. Popul Ecol 50:111–120

    Google Scholar 

  • Neff DJ (1968) The pellet-group count technique for big game trend, census, and distribution: a review. J Wildl Manage 32:597–614

    Google Scholar 

  • Peris A, Closa-Sebastià F, Marco I, Serrano E, Casas-Díaz E (2019) Baiting improves wild boar population size estimates by camera trapping. Mamm Biol 98:28–35

    Google Scholar 

  • Plhal R, Kamler J, Homolka M, Drimaj J (2014) An assessment of the applicability of dung count to estimate the wild boar population density in a forest environment. J Forest Sci 60:174–180

    Google Scholar 

  • Putman RJ (1984) Facts from faeces. Mammal Rev 14:79–97

    Google Scholar 

  • Putman R, Langbein J, Green P, Watson P (2011) Identifying threshold densities for wild deer in the UK above which negative impacts may occur. Mammal Rev 41:175–196

    Google Scholar 

  • Rollins D, Bryant FC, Montandon R (1984) Fecal pH and defecation rates of eight ruminants fed known diets. J Wildl Manage 48:807–813

    Google Scholar 

  • Ruiz-Sinoga JD, Diaz AR (2010) Soil degradation factors along a Mediterranean pluviometric gradient in Southern Spain. Geomorphology 118:359–368

    Google Scholar 

  • Saez-Royuela C, Telleria JL (1986) The increased population of wild boar (Sus scrofa) in Europe. Mammal Rev 16:97–101

    Google Scholar 

  • Sforzi A (2004) Stima dell’abbondanza di cervidi per mezzo del pellet group count in ambiente mediterraneo. Ph.D. thesis, University of Siena, Siena

  • Singer FJ (1981) Wild pig populations in the national parks. Environ Manage 5:263–270

    Google Scholar 

  • Singer FJ, Otto DK, Tipton AR, Hable CP (1981) Home ranges, movements and habitat use of European wild boar in Tennessee. J Wildl Manage 45:343–353

    Google Scholar 

  • Singer FJ, Swank WT, Clebsch EE (1984) Effects of wild pig rooting in a deciduous forest. J Wildl Manage 48:464–473

    CAS  Google Scholar 

  • Sforzi A, Ferretti F, Machetti A, Boldorini U, Tonini L (2014) Programma annuale per la gestione degli Ungulati selvatici del Parco Regionale della Maremma. Ente Parco Regionale della Maremma, Alberese

    Google Scholar 

  • Skalski JR (1994) Estimating wildlife population based on incomplete area surveys. Wildl Soc B 22:192–203

    Google Scholar 

  • Smith AD (1964) Defecation rates of mule deer. J Wildl Manage 28:437–444

    Google Scholar 

  • Snow NP, Jarzyna MA, VerCauteren KC (2017) Interpreting and predicting the spread of invasive wild pigs. J Appl Ecol 54:2022–2032

    Google Scholar 

  • Tiberi R (2007) Danni alla fruttificazione del pino domestico: indagine sulle cause e sulle perdite di produzione. Unpublished report. ARSIA Toscana, Firenze

    Google Scholar 

  • Tonelli L (2013) Linee Gestionali per gli interventi forestali nei SIC/SIR (SIC IT51A0014 [SIR 114] “Pineta Granducale dell’Uccellina”; SIC IT51A0015 [SIR 115] “Dune costiere del Parco dell’Uccellina”; SIC IT51A0039 [SIR 113 E A113 (ZPS) “Padule della Trappola, Bocca d’Ombrone”). Unpublished report. Maremma Regional Park Agency, Alberese

  • Vetter SG, Ruf T, Bieber C, Arnold W (2015) What is a mild winter? Regional differences in within-species responses to climate change. PLoS ONE 10:e0132178

    PubMed  PubMed Central  Google Scholar 

  • Vicente J, Segalés J, Höfle U, Balasch M, Plana-Durán J, Domingo M, Gortázar C (2004) Epidemiological study on porcine circovirus type 2 (PCV2) infection in the European wild boar (Sus scrofa). Vet Res 35:243–253

    PubMed  Google Scholar 

  • Welander J (2000) Spatial and temporal dynamics of wild boar (Sus scrofa) rooting in a mosaic landscape. J Zool 252:263–271

    Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Google Scholar 

Download references

Acknowledgements

We are deeply indebted to L. Venturi and E. Giunta (Maremma Regional Park Agency, MRPA) for their support. We are also grateful to Park wardens and to the personnel of MRPA for logistic support. Ente Terre Regionali Toscane and many landowners allowed us to conduct surveys on their land. We are grateful to L. Fattorini for statistical advice in the planning stage and for comments on an earlier draft. C. Pisani greatly helped in density estimates. We are indebted to M. Galdi, the owner of the Dogfarm Estate, who allowed us to conduct our estimate of defecation rate on his land. We thank M. Ricci, L. Bruni, F. Bazzoni and B. Esattore for support during fieldwork; L. Tonelli and L. Chelazzi for discussions on pinewood management. Servizio Idrologico della Regione Toscana kindly provided us with rainfall data. Two anonymous reviewers provided valuable comments, improving the paper. FF conceived and designed the work. NF and FF collected and analysed data as well as wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ferretti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This study was financially supported by the Maremma Regional Park Agency.

Additional information

Handling editor: Luca Corlatti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 377 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattorini, N., Ferretti, F. Estimating wild boar density and rooting activity in a Mediterranean protected area. Mamm Biol 100, 241–251 (2020). https://doi.org/10.1007/s42991-020-00030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-020-00030-0

Keywords

Navigation