Skip to main content
Log in

On proportional scintillation in very large liquid xenon detectors

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The charge readout of a liquid xenon (LXe) detector via proportional scintillation in the liquid phase was first realized by the Waseda group 40 years ago, but the technical challenges involved were overwhelming. Although the tests were successful, this method was finally discarded and eventually nearly forgotten. Currently, this approach is not considered for large LXe dark matter detectors. Instead, the dual-phase technology was selected despite many limitations and challenges. In two independent studies, two groups from Columbia University and Shanghai Jiao Tong University reevaluated proportional scintillation in the liquid phase. Both studies established the merits for very large LXe detectors, but the Columbia group also encountered apparent limitations, namely the shadowing of the light by the anode wires, and a dependence of the pulse shape on the drift path of the electrons in the anode region. The differences between the two studies, however, are not intrinsic to the technique, but a direct consequence of the chosen geometry. Taking the geometrical differences into account, the results match without ambiguity. They also agree with the original results from the Waseda group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.I. Lopes, V. Chepel, Rare gas liquid detectors, in Electronic Excitations in Liquefied Rare Gases, ed. by W.F. Schmidt, E. Illenberger (American Scientific Publishers, Valencia, 2005), pp. 331–388

    Google Scholar 

  2. E. Aprile, A.E. Bolotnikov, A.I. Bolozdynya et al., Noble Gas Detectors (Wiley, Weinheim, 2006). https://doi.org/10.1002/9783527610020

  3. E. Aprile, T. Doke, Liquid Xenon detectors for particle physics and astrophysics. Rev. Mod. Phys. 82, 2053 (2010). https://doi.org/10.1103/revmodphys.82.2053

    Article  Google Scholar 

  4. K. Abe, K. Hieda, K. Hiraide et al., XMASS detector. Nucl. Inst. Methods A716, 78 (2013). arXiv:1301.2815v1

    Article  Google Scholar 

  5. E. Aprile, J. Angle, F. Arneodo et al., (XENON10 collaboration), Design and performance of the XENON10 dark matter experiment. Astropart. Phys. 34, 679 (2011). https://doi.org/10.1016/j.astropartphys.2011.01.006

  6. V. Chepel, H. Arajo, Liquid noble gas detectors for low energy particle physics. JINST 8, R04001 (2013). https://doi.org/10.1088/1748-0221/8/04/r04001

    Article  Google Scholar 

  7. B.A. Dolgoshein et al., New method of registration of ionizing particle tracks in condensed matter. JETP Lett. 11, 351 (1970)

    Google Scholar 

  8. M. Miyajima, Y. Hoshi, T. Doke et al., A self-triggered liquid xenon drift chamber by the use of proportional ionization or proportional scintillation. Nucl. Inst. Methods 160, 239 (1979). https://doi.org/10.1016/0029-554x(79)90599-8

    Article  Google Scholar 

  9. K. Masuda, S. Takasu, T. Doke et al., A liquid xenon proportional scintillation counter. Nucl. Inst. Methods 160, 247 (1979). https://doi.org/10.1016/0029-554x(79)90600-1

    Article  Google Scholar 

  10. E. Aprile, H. Contreras, L.W. Goetzke et al., Measurements of proportional scintillation and electron multiplication in liquid xenon using thin wires. JINST 9, P11012 (2014). https://doi.org/10.1088/1748-0221/9/11/p11012

    Article  Google Scholar 

  11. T. Ye, K.L. Giboni, X. Ji, Initial evaluation of proportional scintillation in liquid xenon for direct dark matter detection. JINST 9, P12007 (2014). https://doi.org/10.1088/1748-0221/9/12/p12007

    Article  Google Scholar 

  12. J. Aalbers, F. Agostini, M. Alfonsi et al., Darwin: towards the ultimate dark matter detector. JCAP 1611, 017 (2016). https://doi.org/10.1088/1475-7516/2016/11/017

    Article  Google Scholar 

  13. E. Aprile, M. Alfonsi, K. Arisaka et al., Observation and applications of single-electron charge signals in the XENON100 experiment. J. Phys. G41, 035201 (2014). https://doi.org/10.1088/0954-3899/41/3/035201

    Article  Google Scholar 

  14. J. Hogenbirk, P. Aalbers, A. Breur et al., Precision measurements of the scintillation pulse shape for low-energy recoils in liquid xenon. JINST 13, P05016 (2018). https://doi.org/10.1088/1748-0221/13/05/p05016

    Article  Google Scholar 

  15. E. Aprile, M. Alfonsi, K. Arisaka et al., (XENON100 Collaboration), Dark matter results from 225 live days of XENON100 data. Phys. Rev. Lett. 109, 181301 (2012). https://doi.org/10.1103/physrevlett.109.181301

  16. Andi Tan M. Xiao, X. Cui et al., (PandaX collaboration), Dark matter results from first 98.7 days of data from the panda X-II experiment. Phys. Rev. Lett. 117 (2016) 121303. https://doi.org/10.1103/physrevlett.117.121303

  17. D.S. Akerib, H.M. Arajo, X. Bai et al., (LUX collaboration), Results on the spin-dependent scattering of weakly interacting massive particles on nucleons from the run 3 data of the LUX experiment. Phys. Rev. Lett. 116, 161302 (2016). https://doi.org/10.1103/physrevlett.116.161302

  18. E. Aprile, J. Aalbers, F. Agostini et al., (XENON1T collaboration), XENON1T dark matter data analysis: signal and background models and statistical inference. Phys. Rev. Lett. 99, 112009 (2019). https://doi.org/10.1103/physrevd.99.112009

  19. O. Bunemann, T.E. Cranshaw, J.A. Harvey, Design of grid ionization chambers. Can. J. Res. 27, 191 (1949). https://doi.org/10.1139/cjr49a-019

    Article  Google Scholar 

  20. E. Gatti, G. Padovini, L. Quartapelle et al., Considerations for the design of a time projection liquid argon ionization chamber. IEEE NS 26(2), 2910 (1979). https://doi.org/10.1109/tns.1979.4330558

    Article  Google Scholar 

  21. X. Cao, X. Chen, Y. Chen et al., PandaX: a liquid xenon dark matter experiment at CJPL. Sci. China Phys. Mech. Astron. (2014). https://doi.org/10.1007/s11433-014-5521-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Juyal.

Additional information

This work has been supported by a Grant from the Ministry of Science and Technology of China (No. 2016YFA0400301).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juyal, P., Giboni, KL., Ji, XD. et al. On proportional scintillation in very large liquid xenon detectors. NUCL SCI TECH 31, 93 (2020). https://doi.org/10.1007/s41365-020-00797-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00797-4

Keywords

Navigation