Skip to main content
Log in

Growth Equations in Forest Research: Mathematical Basis and Model Similarities

  • Modelling Productivity and Function (M Kirschbaum, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Growth equations have been widely used in forest research, commonly to assess ecosystem-level behavior and forest management. Nevertheless, the large number of growth equations has obscured the growth-rate behavior of each of these equations and several different terms for referring to common phenomena. This review presents a unified mathematical treatment of growth-rates besides several well-known growth equations by giving their mathematical basis and representing their behavior using tree growth data as an example.

Recent Findings

We highlight the mathematical differences among several growth equations that can be better understood by using their differential equations forms rather than their integrated forms. Moreover, the assumed-and-claimed biological basis of these growth-rate models has been taken too seriously in forest research. The focus should be on using a plausible equation for the organism being modelled. We point out that more attention should be drawn to parameter estimation strategies and behavior analysis of the proposed models. Thus, it is difficult for a single model to capture all possible shapes and rates that such a complex biological process as tree growth can depict in nature.

Summary

We pointed out misleading concepts attributed to some growth equations; however, the differences come from their mathematical properties rather than pure biological reasoning. Using the tree growth data, we depict those differences. Thus, comparisons of some functional forms (at least simple ones) must be carried out before selecting a function for drawing scientific findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seger SL, Harlow SD. Mathematical models from laws of growth to tools for biological analysis: fifty years of growth. Growth 1987;51:1–21.

    Google Scholar 

  2. Lambers H, Oliveira RS. Plant physiological ecology, 3rd ed. New York: Springer; 2019.

    Book  Google Scholar 

  3. Seber GAF, Wild CJ. Nonlinear regression. New York: Wiley; 1989, p. 800.

    Book  Google Scholar 

  4. Evans GC. The quantitative analysis of plant growth. Berkeley: University of California Press; 1972, p. 734.

    Google Scholar 

  5. Oliver CD, Larson BC. Forest stand dynamics, 2nd ed. New York: Wiley; 1996, p. 520.

    Google Scholar 

  6. Barnes BV, Zak DR, Denton SR, Spurr SH. Forest ecology, 4th ed. New York: Wiley; 1997, p. 800.

    Google Scholar 

  7. Kimmins JP. Forest ecology, 3rd ed. Upper Saddle River: Pearson Prentice Hall; 2004, p. 611.

    Google Scholar 

  8. Odin H. 1972. Studies of the increment rhythm of scots pine and Norway spruce plants. Technical report, Studia Forestalia Suecica No. 97, Stockholm, Sweden, pp 32.

  9. Ek AR, Monserud RA. 1975. Methodology for modeling forest stand dynamics. Department of Forestry, University of Wisconsin–Madison, Staff Paper Series No. 2. Madison, WI, USA, pp 30.

  10. Bruce D. Consistent height-growth and growth-rate estimates for remeasured plots. Forest Sci 1981;27(4):711–725.

    Google Scholar 

  11. Yang RC, Kozak A, Smith JH. The potential of Weibull-type functions as flexible growth curves. Can J For Res 1978;8(2):424–431.

    Article  Google Scholar 

  12. Buckman RE. 1962. Growth and yield of red pine in Minnesota. USDA For. Serv. Tech. Bull. No. 1272, USA, pp 50.

  13. Haig IT. 1932. Second–growth yield, stand, and volume tables for the western white pine type. USDA For. Serv. Tech. Bull. No. 323, USA, pp 67.

  14. ∙ Clutter JL. Compatible growth and yield models for loblolly pine. Forest Sci 1963;9(3):354–371. The author highlights the mathematical relationship between growth and growth-rates in forest growth models.

  15. Curtis RO. 1967. A method of estimation of gross yield of Douglas-fir. For. Sci. Monogr., pp 13.

  16. Vanclay JK. 1994. Modelling forest growth and yield: applications to mixed tropical forests. CAB International, Wallingford, Berkshire. England, pp 312.

  17. Blackman VH. The compound interest law and plant growth. Ann Bot 1919;33(3):353–360.

    Article  Google Scholar 

  18. Fisher RA. Some remarks on the methods formulated in a recent article on “the quantitative analysis of plant growth”. Ann Appl Biol 1921;7:367–372.

    Article  Google Scholar 

  19. Richards FJ. A flexible growth function for empirical use. J Experimental Botany 1959;10(29): 290–300.

    Article  Google Scholar 

  20. von Bertalanffy L. Quantitative laws in metabolism and growth. The Quarterly Review of Biology 1957;32(3):217–231.

    Article  CAS  Google Scholar 

  21. Schumacher FX. A new growth curve and its application to timber yield studies. J Forestry 1939; 37(10):819–820.

    Google Scholar 

  22. Cooper CF. Equations for the description of past growth in even-aged stands of ponderosa pine. Forest Sci 1961;7(1):72– 80.

    Google Scholar 

  23. Pommerening A, Muszta A. Relative plant growth revisited: towards a mathematical standardisation of separate approaches. Ecol Model 2016;320:383–392.

    Article  Google Scholar 

  24. Larson RE, Hoestetler RP. In: Head DC, editor. Calculus with analytic geometry, 3rd ed. Lexington: Company; 1990, p. 1083.

  25. Davenport CB. Human growth curve. J General Physiology 1926;10(2):205–216.

    Article  CAS  Google Scholar 

  26. Monserud RA. 1975. Methodology for simulating Wisconsin northern hardwood stand dynamics. Ph.D. thesis, University of Wisconsin, Madison, WI, USA, pp 156.

  27. Priestley JH, Pearsall WH. Growth studies. II. An interpretation of some growth–curves. Ann Bot 1922;36(2):239–250.

    Article  Google Scholar 

  28. Baker FS. 1950. Principles of silviculture. McGraw-Hill, New York, USA, pp 414.

  29. Assmann E. 1970. The principles of forest yield study. English edition. Pergamon Press, Oxford, England, pp 506.

  30. Zedaker SM, Burkhart HE, Stage AR. 1987. General principles and patterns of conifer growth and yield. In Walstad, JD, Kuch, PJ eds. Forest vegetation management for conifer production. Wiley, New York, USA, p. 203–241.

  31. MacKinney AL, Schumacher FX. Construction of yield tables for nonnormal loblolly pine stands. J Agricultural Research 1937;54(7):531–545.

    Google Scholar 

  32. Pukkala T. Carbon forestry is surprising. Forest Ecosystems 2018;5(1):11.

    Article  Google Scholar 

  33. Viitala E. Timber, science and statecraft: the emergence of modern forest resource economic thought in Germany. Eur J For Res 2016;135(6):1037–1054.

    Article  Google Scholar 

  34. Schabenberger O, Pierce FJ. 2002. Contemporary statistical models for the plant and soil sciences. CRC Press, Boca Raton, FL, USA, pp 738.

  35. Koops WJ. Multiphasic growth curve analysis. Growth 1986;50:169–177.

    CAS  Google Scholar 

  36. Landsberg J, Sands P. 2011. Physiological ecology of forest production: principles, processes and models. Academic Press, San Diego, CA, USA, pp 330.

  37. García O. Unifying sigmoid univariate growth equations. Forest Biometry, Modelling and Information Sciences 2005;1:63–68.

    Google Scholar 

  38. Salas-Eljatib C. Height growth–rate at a given height: a mathematical perspective for forest productivity. Ecol Model 2020;109198:431.

    Google Scholar 

  39. Grosenbaugh LR. Generalization and reparameterization of some sigmoid and other nonlinear functions. Biometrics 1965;21(3):708–714.

    Article  Google Scholar 

  40. Zeide B. Accuracy of equations describing diameter growth. Can J For Res 1989;19(10):1283–1286.

    Article  Google Scholar 

  41. ∙ Zeide B. Analysis of growth equations. Forest Sci. 1993;39(3):594–616. A comprehensive study offering mathematical grounds to compare growth equations.

  42. Shvets V, Zeide B. Investigating parameters of growth equations. Can J For Res 1996;26(11): 1980–1990.

    Article  Google Scholar 

  43. Kiviste A, Álvarez JG, Rojo A, Ruíz AD. 2002. Funciones de crecimiento de aplicación en el ámbito forestal. Monografías INIA, Forestal No. 4, Madrid, Spain, pp 190.

  44. Paine CET, Marthews TR, Vogt DR, Purves D, Rees M, Hector A, Turnbull LA. How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods Ecol Evol 2012;3(2):245–256.

    Article  Google Scholar 

  45. Meyer HA. A mathematical expression for height curves. J Forestry 1940;38(5):415–420.

    Google Scholar 

  46. Pielou E. An introduction to mathematical ecology. New York: Wiley–Interscience; 1969, p. 286.

    Google Scholar 

  47. Ricker WE. Growth rates and models. Fish physiology. Volume VIII bioenergetics and growth. In: Hoar WS, Randall DJ, and Brett JR, editors. New York: Academic Press; 1979. p. 677–743.

  48. Gotelli NJ. A primer of ecology, 3rd ed. Sunderland: Sinauer Associates Inc.; 2001, p. 265.

    Google Scholar 

  49. Dennis B, Desharnais RA, Cushing JM, Henson SM, Costantino RF. Can noise induce chaos? Oikos 2003;102(2):329–339.

    Article  Google Scholar 

  50. Dennis B. Allee effects in stochastic populations. Oikos 2002;96(3):389–401.

    Article  Google Scholar 

  51. Monserud RA. Height growth and site index curves for Inland Douglas-fir based on stem analysis data and forest habitat type. Forest Sci 1984;30(4):943–965.

    Google Scholar 

  52. Robertson TB. On the normal rate of growth of an individual, and its biochemical significance. Archiv für Entwicklungsmechanik der Organismen 1908;XXV:581–614.

    Article  Google Scholar 

  53. Pearl R. Some recent studies on growth. The American Naturalist 1909;43(509):302–316.

    Article  Google Scholar 

  54. von Bertalanffy L. 1969. General system theory. foundations, Development, Applications. George Braziller, INC., New York, USA, pp 295.

  55. Gompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 1825;115:513– 583.

    Google Scholar 

  56. Medawar PB. The growth, growth energy, and ageing of the chicken’s heart. Proceedings of the Royal Society B 1940;129(856):332–355.

    Google Scholar 

  57. Johnson NO. A trend line for growth series. J Am Stat Assoc 1935;30(192):717–717.

    Article  Google Scholar 

  58. Baskerville GL. Use of logarithmic regression in the estimation of plant biomass. Can J For Res 1972;3:49–53.

    Article  Google Scholar 

  59. ∙ Mehtätalo, L, Lappi, J. Biometry for forestry and environmental data: with examples in R. Chapman & Hall / CRC Press, Boca Raton, FL, US, pp 411. 2020. An applied statistics book on forestry data, with emphasis on mixed-effect models.

  60. Furnival GM. Growth and yield prediction: some criticisms and suggestions. Proceedings of the seminar series predicting forest growth and yield: current issues, future prospects. College of Forest Resources, University of Washington, Institute of Forest Resources Contribution Number 58. Seattle, WA, USA, pp 23–30. In: Chapell HN and Maguire DA , editors; 1987.

  61. von Bertalanffy L. Untersuchungen über die gesetzlichkeit des wachstums. I. Allgemeine grundlagen der theorie. Mathematisch-physiologische gesetzlichkeiten des wachstums bei wassertieren. Wilhelm Roux Arch Entwickl Mech Org. 1934;131:613–652.

    Google Scholar 

  62. von Bertalanffy L. Problems of organic growth. Nature 1949;163:156–158.

    Article  Google Scholar 

  63. Leary RA. 1985. Interaction theory in forest ecology and management. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, USA, pp 219.

  64. ∙∙ García O. A stochastic differential equation model for the height growth of forest stands. Biometrics. 1983;39(4):1059–1072. The author offers a parameter estimation algorithm to fit stochastic differential equations in forestry. Besides, the study provides a plethora of mathematical details.

  65. Yuncai L, Pacheco C, Wolfango F. Comparison of Schnute’s and Bertalanffy-Richards’ growth functions. For Ecol Manage 1997;96:283–288.

    Article  Google Scholar 

  66. Salas C, Stage AR, Robinson AP. Modeling effects of overstory density and competing vegetation on tree height growth. Forest Sci 2008;54(1):107–122.

    Article  Google Scholar 

  67. Chapman DG. Statistical problems in dynamics of exploited fisheries populations. Proc. 4th Berkeley symp. on mathematics, statistics and probability. In: Neyman J, editors. Berkeley: University of California Press; 1961. p. 153–168.

  68. Pienaar LV, Turnbull KJ. The Chapman-Richards generalization of von Bertalanffy’s growth model for basal area growth and yield in even-aged stands. Forest Sci 1973;19(1):2–22.

    Google Scholar 

  69. García O. Visualization of a general family of growth functions and probability distributions – the growth-curve explorer. Environ Model Softw 2008;23(12):1474–1475.

    Article  Google Scholar 

  70. Ross S. A first course in probability, 7th ed. Upper Saddle River: Pearson Prentice Hall; 2006, p. 565.

    Google Scholar 

  71. Clutter JL, Fortson JC, Pienaar LV, Brister GH, Bailey RL. 1983. Timber management: a quantitative approach. Wiley, New York, USA, pp 333.

  72. Husch B, Beers TW, Kershaw JA. Forest mensuration, 4th ed. New York: Wiley; 2003, p. 443.

    Google Scholar 

  73. Prodan M. 1968. Forest biometrics. Pergamon Press, London, UK, pp 447.

  74. Pielou EC. The usefulness of ecological models: a stock-taking. The Quarterly Review of Biology 1981;56(1):17–31.

    Article  Google Scholar 

  75. Payandeh B, Wang Y. Comparison of the modified Weibull and Richards growth function for developing site index equations. New Forest 1995;9(2):147–155.

    Article  Google Scholar 

  76. Schnute I. A versatile growth model with statistically stable parameters. Can J Fish Aquat Sci 1981;38(9):1128–1140.

    Article  Google Scholar 

  77. Bredenkamp BV, Gregoire TG. A forestry application of Schnute’s generalized growth function. Forest Sci 1988;34(3):790–797.

    Google Scholar 

  78. ∙∙ Leary RA, Nimerfro K, Holdaway M, Brand G, Burk T, Kolka R, Wolf A. Height growth modeling using second order differential equations and the importance of initial height growth. For Ecol Manage. 1997;97(2):165–172. The study accentuates the effect of initial tree height in the growth trajectories built from differential equations.

  79. Rotella JJ, Ratti JT, Reese KP, Taper ML, Dennis B. Long-term population analysis of gray partridge in eastern Washington. Journal of Wildlife Ecology 1996;60(4):817–825.

    Google Scholar 

  80. Dennis B, Ponciano JM, Lele SR, Taper ML, Staples D. Estimating density dependence, process noise and observation error. Ecol Monogr 2006;76(3):323–341.

    Article  Google Scholar 

  81. Rawat AS, Franz F. Growth models for tree and stand simulation, Res. Note 30. Proc. IUFRO Working Party S4.01-4 Meetings, Dep. For. Yield Res., Royal Coll. For., Stockholm, Sweeden, pp 180–221. In: Fries J, editors; 1974.

  82. Nokoe S. Demonstrating the flexibility of the Gompertz function as yield model using mature species data. Commonw For Rev 1978;57(1):35–42.

    Google Scholar 

  83. Moser JW Jr, Hall OF. Deriving growth and yield functions for uneven-aged forest stands. Forest Sci 1969;15(2):183–188.

    Google Scholar 

  84. Yuncai L, Pacheco C, Wolfango F. Features and applications of Bertalanffy-Richards’ and Schnute’s growth equations. Nat Resour Model 2001;14(3):1–19.

    Google Scholar 

  85. Lei Y, Zhang SY. Comparison and selection of growth models using the Schnute model. J Forest Science 2006;52(4):188– 196.

    Article  Google Scholar 

  86. Leech JW, Ferguson IS. Comparison of yield models for unthinned stands of radiata pine. Aust For Res 1981;11:231– 245.

    Google Scholar 

  87. Xiao CL, Subbarao KV, Zeng SM. Incorporating an asymptotic parameter into the Weibull model to describe plant disease progress. J Phytopathology 1996;144(7–8):375–382.

    Article  Google Scholar 

  88. Zhang L. Cross-validation of non-linear growth functions for modelling tree height-diameter relationships. Ann Bot 1997;79(3):251–257.

    Article  Google Scholar 

  89. Peng C, Zhang L, Liu J. Developing and validating nonlinear height-diameter models for major tree species of Ontario’s boreal forests. North J Appl For 2001;18(3):87–94.

    Article  Google Scholar 

  90. Colbert JJ, Schuckers M, Fekedulegn D, Rentch J, MacSiúrtáin M, Gottschalk K. Individual tree basal-area growth parameter estimates for four models. Ecol Model 2004;174(1–2):115– 126.

    Article  Google Scholar 

  91. Khamis A, Ismail Z, Haron K, Mohammed AT. Nonlinear growth models for modeling oil palm yield growth. J Mathematics and Statistics 2005;1(3):225–233.

    Article  Google Scholar 

  92. Hau B, Kosman E. Analytical and theoretical plant pathology comparative analysis of flexible two-parameter models of plant disease epidemics. Phytopathology 2007;97(10):1231– 1244.

    Article  CAS  Google Scholar 

  93. Donoso P, Donoso C, Navarro C, Escobar B. 2006. Nothofagus dombeyi. In Donoso C (ed.) Las especies arbóreas de los bosques templados de Chile y Argentina. Autoecología. Marisa Cuneo Ediciones, Valdivia, Chile, p. 423–432.

  94. ∙ Lappi J, Bailey RL. A height prediction model with random stand and tree parameters: an alternative to traditional site index methods. Forest Sci. 1988;34:907–927. For the first time, mixed-effects models are applied to forest growth modelling.

  95. Lindstrom MJ, Bates DM. Nonlinear mixed effects models for repeated measures data. Biometrics 1990;46(3):673–687.

    Article  CAS  Google Scholar 

  96. Gregoire TG, Schabenberger O. Nonlinear mixed-effects modeling of cumulative bole volume with spatially correlated within-tree data. J Agric Biol Environ Stat 1996;1:107–119.

    Article  Google Scholar 

  97. Pinheiro JC, Bates DM. 2000. Mixed-effects models in S and Splus. Springer-verlag, New York, USA, pp 528.

  98. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2021. nlme: linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme. R package version 3.1-152.

  99. R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

  100. Salas C, Ene L, Gregoire TG, Næsset E, Gobakken T. Modelling tree diameter from airborne laser scanning derived variables: A, comparison of spatial statistical models. Remote Sensing of Environment 2010;114(6):1277–1285.

    Article  Google Scholar 

  101. Wang M, Rennols K. Tree diameter distribution modelling: introducing the logit-logistic distribution. Can J For Res 2005;35:1305–313.

    Article  Google Scholar 

  102. Jolicoeur P. Human stature: which growth model? Growth, Development & Aging 1991;55:129–132.

    CAS  Google Scholar 

  103. Huang S, Titus SJ, Wiens DP. Comparison of nonlinear height-diameter functions for major Alberta tree species. Can J For Res 1992;22(9):1297–1304.

    Article  Google Scholar 

  104. Kobe RK. Light gradient partitioning among tropical tree species through differential seedling mortality and growth. Ecol 1999;80(1):187–201.

    Article  Google Scholar 

  105. Kobe RK. Sapling growth as a function of light and landscape-level variation in soil water and foliar nitrogen in northern michigan. Oecologia 2006;147(1):119–133.

    Article  Google Scholar 

  106. Holste EK, Kobe RK, Vriesendorp CF. Seedling growth responses to soil resources in the understory of a wet tropical forest. Ecol 2011;92(9):1828–1838.

    Article  Google Scholar 

  107. Tjørve E, Tjørve KMC. A unified approach to the Richards-model family for use in growth analyses: Why we need only two model forms. Journal of Theoretical Biology 2010;267(3):417–425.

    Article  Google Scholar 

  108. Causton DR. A computer program for fitting the Richards function. Biometrics 1969;25(2):401–409.

    Article  Google Scholar 

  109. Fresco LFM. A model for plant-growth – estimation of the parameters of the logistic function. Acta Botanica Neerlandica 1973;22:486–489.

    Article  Google Scholar 

  110. von Gadow K, Hui G. 1999. Modelling Forest Development. Cuvillier Verlag, Göttingen, Germany, pp 211.

  111. Weiskittel AR, Hann DW, Kershaw JA Jr, Vanclay JK. Forest growth and yield modeling. New York: Wiley; 2011, p. 430.

    Book  Google Scholar 

  112. Stage AR. How forest models are connected to reality: evaluation criteria for their use in decision support. Can J For Res 2003;33(3):410–421.

    Article  Google Scholar 

  113. Soto DP, Jacobs DF, Salas C, Donoso PJ, Fuentes C, Puettmann KJ. Light and nitrogen interact to influence regeneration in old-growth Nothofagus-dominated forests in south-central Chile. For Ecol Manage 2017;384:303–313.

    Article  Google Scholar 

  114. Pacala SW, Canham CD, Saponara J, Silander JA, Kobe RK, Ribbens E. Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol Appl 1996;66(1):1–43.

    Google Scholar 

  115. Coates KD, Burton PJ. Growth of planted tree seedlings in response to ambient light levels in northwestern interior cedar-hemlock forests of British Columbia. Can J For Res 1999;29:1347–1382.

    Article  Google Scholar 

  116. Soto DP, Donoso PJ, Salas C, Puettmann KJ. Light availability and soil compaction influence the growth of underplanted Nothofagus following partial shelterwood harvest and soil scarification. Can J For Res 2015;45:998–1005.

    Article  Google Scholar 

  117. Twilley RR, Rivera-Monroy VH, Chen R, Botero L. Adapting an ecological mangrove model to simulate trajectories in restoration ecology. Mar Pollut Bull 1999;37(8):404–419.

    Article  Google Scholar 

  118. Petit B, Montagnini F. Growth equations and rotation ages of ten native tree species in mixed and pure plantations in the humid neotropics. For Ecol Manage 2004;2004(2):243–257.

    Article  Google Scholar 

  119. Vaverková MD, Radziemska M, Barton̆ S, Cerdà A, Koda E. The use of vegetation as a natural strategy for landfill restoration. Land Degradation & Development 2018;29(10):3674– 3680.

    Article  Google Scholar 

  120. Niklas K. 1994. Plant allometry: the scaling of form and process. University of Chicago Press, USA, pp 395.

  121. Enquist B, Brown JH, West GB. Allometric scaling of plant energetics and population density. Nature 1998;395:163–165.

    Article  CAS  Google Scholar 

  122. West GB, Enquist BJ, Brown JH. A general model for the structure and allometry of plant vascular systems. Nature 1999;400:664–667.

    Article  CAS  Google Scholar 

  123. Curtis RO. Height-diameter and height-diameter-age equations for second-growth Douglas-fir. Forest Sci. 1967;13(4):365–375.

    Google Scholar 

  124. Mehtätalo L, de Miguel S, Gregoire TG. Modeling height-diameter curves for prediction. Can J For Res 2015;45:826–837.

    Article  Google Scholar 

  125. Mäkelä A. Derivation of stem taper from the pipe theory in a carbon balance framework. Tree Physiol 2002;22(13):891–905.

    Article  Google Scholar 

  126. García O. Dynamic modelling of tree form. Math.Comput For Nat-Res Sci 2015;7:9.

    Google Scholar 

  127. Rees M, Osborne CP, Woodward FI, Hulme SP, Turnbull LA, Taylor SH. Partitioning the components of relative growth rate: how important is plant size variation? The American Naturalist 2010; 176(6):152–161.

    Article  Google Scholar 

  128. Pommerening A, Muszta A. Methods of modelling relative growth rate. Forest Ecosystems 2015; 2:5.

    Article  Google Scholar 

  129. ∙ Ellison AM, Dennis B. Paths to statistical fluency for ecologists. Frontiers in Ecology and the Environment. 1996;8(7):362–370. Addresses the importance of mathematical and statistical knowledge in ecology.

  130. García O. 1968. Problemas y modelos en el manejo de las plantaciones forestales. Tesis Ingeniero Forestal, Universidad de Chile, Santiago, Chile, pp 64.

  131. Leary RA, Skog KE. A computational strategy for system identification in ecology. Ecology 1972; 53(5):969–973.

    Article  Google Scholar 

  132. Leary RA. 1979. Design. In a generalized forest growth projection system applied to the Lake states region. USDA For. Serv., Gen. Tech. Rep. NC-49. Sant Paul, Minnesota, USA, pp 5–15.

  133. ∙∙ Hamlin D, Leary RA. Methods for using an integro-differential equation as a model of tree height growth. Can J For Res. 1987;17(5):353–356. The study gives mathematical and statistical details for fitting differential equations using tree growth data.

  134. Dennis B. Statistics and the scientific method in ecology. The nature of scientific evidence: statistical, philosophical, and empirical considerations. The University of Chicago Press, Chicago, IL, USA, pp 327–378. In: Taper ML and Lele SR, editors; 1996.

Download references

Funding

This study was supported by the Chilean research grants Fondecyt No. 1191816 and FONDEF No. ID19|10421, Academy of Finland Flagship Programme (UNITE, decision number 337655), and ANID BASAL FB210015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Salas-Eljatib.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest .

Additional information

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Papers of particular interest, published recently, have been highlighted as:

∙ Of importance

∙∙ Of major importance

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Modelling Productivity and Function

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salas-Eljatib, C., Mehtätalo, L., Gregoire, T.G. et al. Growth Equations in Forest Research: Mathematical Basis and Model Similarities. Curr Forestry Rep 7, 230–244 (2021). https://doi.org/10.1007/s40725-021-00145-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-021-00145-8

Keywords

Navigation