Skip to main content
Log in

Management of Vascular Injuries During Endoscopic Skull Base Surgery: Current Strategies and Simulation-Based Educational Paradigms

  • Rhinology: Advances in Endoscopic Sinus Surgery (R Sacks, Section Editor)
  • Published:
Current Otorhinolaryngology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

With fully endoscopic surgery rapidly emerging as a preferred modality of care in the minimally invasive approach to the ventral skull base, surgeons may increasingly encounter critical vascular structures reached via narrow corridors. Internal carotid artery (ICA) injury is a rare but much dreaded complication during endoscopic endonasal approaches (EEA). We reviewed management strategies and outcomes following ICA injury during skull base surgery as well as currently available simulation teaching models.

Recent Findings

Multiple simulation models of ICA injury during EEA have been developed in recent years to prepare surgical trainees for this uncommon intraoperative scenario. These high-flow simulators aim to be reproducible and realistic. Current educational models include a live sheep ICA model, a perfusion-based human cadaveric model, and synthetic skull base models created using selective laser sintering. The live sheep model has allowed further investigation of optimal hemostatic agents and techniques in variable injury patterns, including the crushed muscle patch and endoscopic ligation devices. The perfusion-based human cadaveric model provides the most realistic anatomical scenario for simulation. Emphasized concepts and maneuvers in each of these models include appropriate use of suction, initial packing and hemostasis without causing vessel occlusion, and placement of a muscle patch. Preliminary validation of these simulation models suggests their efficacy in improving psychomotor surgical skills and trainee self-confidence as well as potentially translating to patient outcomes in the post-training incidences of carotid injury.

Summary

It is important for skull base surgeons to be optimally prepared for and adept in the management of ICA injury. Several simulation platforms are highlighted and worthy of incorporation into organized resident and fellow training programs. Further research into hemostatic strategies and biomaterials, and objective validation pertaining to the efficacy of these simulation models are necessary to guide future curriculum development in skull base surgical training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of Particular Interest, Published Recently, Have Been Highlighted as: •• Of Major Importance

  1. Karnezis TT, Baker AB, Soler ZM, Wise SK, Rereddy SK, Patel ZM, et al. Factors impacting cerebrospinal fluid leak rates in endoscopic sellar surgery. International forum of allergy & rhinology. 2016; doi:10.1002/alr.21783.

    Google Scholar 

  2. Fathalla H, Di Ieva A, Lee J, Anderson J, Jing R, Solarski M, et al. Cerebrospinal fluid leaks in extended endoscopic transsphenoidal surgery: covering all the angles. Neurosurg Rev. 2016; doi:10.1007/s10143-016-0776-x.

    PubMed  Google Scholar 

  3. Dedmon MM, Locketz GD, Chambers KJ, Naunheim MR, Lin DT, Gray ST. Skull base surgery training and practice patterns among recent otolaryngology fellowship graduates. J Neurol Surg B Skull Base. 2016;77(4):297–303. doi:10.1055/s-0035-1567892.

    PubMed  Google Scholar 

  4. Braun T, Betz CS, Ledderose GJ, Havel M, Stelter K, Kuhnel T, et al. Endoscopic sinus surgery training courses: benefit and problems—a multicentre evaluation to systematically improve surgical training. Rhinology. 2012;50(3):246–54. doi:10.4193/Rhino11.266.

    CAS  PubMed  Google Scholar 

  5. Inamasu J, Guiot BH. Iatrogenic carotid artery injury in neurosurgery. Neurosurg Rev. 2005;28(4):239–47. discussion 48 doi:10.1007/s10143-005-0412-7.

    Article  PubMed  Google Scholar 

  6. Ciric I, Ragin A, Baumgartner C, Pierce D. Complications of transsphenoidal surgery: results of a national survey, review of the literature, and personal experience. Neurosurgery. 1997;40(2):225–36. discussion 36-7

    Article  CAS  PubMed  Google Scholar 

  7. Gardner PA, Tormenti MJ, Pant H, Fernandez-Miranda JC, Snyderman CH, Horowitz MB. Carotid artery injury during endoscopic endonasal skull base surgery: incidence and outcomes. Neurosurgery. 2013;73(2 Suppl Operative):ons261–9. discussion ons9-70 doi:10.1227/01.neu.0000430821.71267.f2.

    PubMed  Google Scholar 

  8. Gardner PA, Kassam AB, Snyderman CH, Carrau RL, Mintz AH, Grahovac S, et al. Outcomes following endoscopic, expanded endonasal resection of suprasellar craniopharyngiomas: a case series. J Neurosurg. 2008;109(1):6–16. doi:10.3171/JNS/2008/109/7/0006.

    Article  PubMed  Google Scholar 

  9. Frank G, Sciarretta V, Calbucci F, Farneti G, Mazzatenta D, Pasquini E. The endoscopic transnasal transsphenoidal approach for the treatment of cranial base chordomas and chondrosarcomas. Neurosurgery. 2006;59(1 Suppl 1):ONS50-7. doi:10.1227/01.NEU.0000219914.17221.55.discussion ONS-7

    Google Scholar 

  10. Valentine R, Wormald PJ. Carotid artery injury after endonasal surgery. Otolaryngol Clin N Am. 2011;44(5):1059–79. doi:10.1016/j.otc.2011.06.009.

    Article  Google Scholar 

  11. Bouthillier A, van Loveren HR, Keller JT. Segments of the internal carotid artery: a new classification. Neurosurgery. 1996;38(3):425–32. discussion 32-3

    CAS  PubMed  Google Scholar 

  12. Solares CA, Ong YK, Carrau RL, Fernandez-Miranda J, Prevedello DM, Snyderman CH, et al. Prevention and management of vascular injuries in endoscopic surgery of the sinonasal tract and skull base. Otolaryngol Clin N Am. 2010;43(4):817–25. doi:10.1016/j.otc.2010.04.008.

    Article  Google Scholar 

  13. Chin OY, Ghosh R, Fang CH, Baredes S, Liu JK, Eloy JA. Internal carotid artery injury in endoscopic endonasal surgery: a systematic review. Laryngoscope. 2016;126(3):582–90. doi:10.1002/lary.25748.

    Article  PubMed  Google Scholar 

  14. Shen J, Tourje J, Chang EE, Mamelak AN, Wu AW. Persistent trigeminal artery in endonasal resection of skull base tumors: a systematic review. J Neurol Surg B Skull Base. 2016; doi:10.1055/s-0036-1581066.

    Google Scholar 

  15. Kassam AB, Vescan AD, Carrau RL, Prevedello DM, Gardner P, Mintz AH, et al. Expanded endonasal approach: vidian canal as a landmark to the petrous internal carotid artery. J Neurosurg. 2008;108(1):177–83. doi:10.3171/JNS/2008/108/01/0177.

    Article  PubMed  Google Scholar 

  16. Padhye V, Valentine R, Wormald PJ. Management of carotid artery injury in endonasal surgery. Int Arch Otorhinolaryngol. 2014;18(Suppl 2):S173–8. doi:10.1055/s-0034-1395266.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Valentine R, Wormald PJ. Controlling the surgical field during a large endoscopic vascular injury. Laryngoscope. 2011;121(3):562–6. doi:10.1002/lary.21361.

    Article  PubMed  Google Scholar 

  18. Valentine R, Boase S, Jervis-Bardy J, Dones Cabral JD, Robinson S, Wormald PJ. The efficacy of hemostatic techniques in the sheep model of carotid artery injury. International forum of allergy & rhinology. 2011;1(2):118–22. doi:10.1002/alr.20033.

    Article  Google Scholar 

  19. Padhye V, Valentine R, Paramasivan S, Jardeleza C, Bassiouni A, Vreugde S, et al. Early and late complications of endoscopic hemostatic techniques following different carotid artery injury characteristics. International forum of allergy & rhinology. 2014;4(8):651–7. doi:10.1002/alr.21326.

    Article  Google Scholar 

  20. Padhye V, Murphy J, Bassiouni A, Valentine R, Wormald PJ. Endoscopic direct vessel closure in carotid artery injury. International forum of allergy & rhinology. 2015;5(3):253–7. doi:10.1002/alr.21453.

    Article  Google Scholar 

  21. Van Rompaey J, Bowers G, Radhakrishnan J, Panizza B, Solares CA. Endoscopic repair of an injured internal carotid artery utilizing femoral endovascular closure devices. Laryngoscope. 2014;124(6):1318–24. doi:10.1002/lary.24403.

    Article  PubMed  Google Scholar 

  22. Gardner PA, Snyderman CH, Fernandez-Miranda JC, Jankowitz BT. Management of major vascular injury during endoscopic endonasal skull base surgery. Otolaryngol Clin N Am. 2016;49(3):819–28. doi:10.1016/j.otc.2016.03.003.

    Article  Google Scholar 

  23. Snyderman C, Kassam A, Carrau R, Mintz A, Gardner P, Prevedello DM. Acquisition of surgical skills for endonasal skull base surgery: a training program. Laryngoscope. 2007;117(4):699–705. doi:10.1097/MLG.0b013e318031c817.

    Article  PubMed  Google Scholar 

  24. Bhutta MF. A review of simulation platforms in surgery of the temporal bone. Clin Otolaryngol. 2016;41(5):539–45. doi:10.1111/coa.12560.

    Article  CAS  PubMed  Google Scholar 

  25. •• Valentine R, Wormald PJ. A vascular catastrophe during endonasal surgery: an endoscopic sheep model. Skull Base. 2011;21(2):109–14. doi:10.1055/s-0031-1275255. This was the landmark study replicating the endoscopic surgical field in an animal model of ICA injury. It allowed subsequent analysis of hemostatic techniques and clinical outcomes of surgeons after simulation training.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Padhye V, Valentine R, Sacks R, Ooi EH, Teo C, Tewfik M, et al. Coping with catastrophe: the value of endoscopic vascular injury training. International forum of allergy & rhinology. 2015;5(3):247–52. doi:10.1002/alr.21471.

    Article  Google Scholar 

  27. Oyama K, Ditzel Filho LF, Muto J, de Souza DG, Gun R, Otto BA, et al. Endoscopic endonasal cranial base surgery simulation using an artificial cranial base model created by selective laser sintering. Neurosurg Rev. 2015;38(1):171–8. discussion 8 doi:10.1007/s10143-014-0580-4.

    Article  PubMed  Google Scholar 

  28. •• Muto J, Carrau RL, Oyama K, Otto BA, Prevedello DM. Training model for control of an internal carotid artery injury during transsphenoidal surgery. Laryngoscope. 2016; doi:10.1002/lary.26181. This was an innovative synthetic model of ICA injury using selective laser sintering with polyamide nylon and glass beads.

    PubMed  Google Scholar 

  29. •• Pham M, Kale A, Marquez Y, Winer J, Lee B, Harris B, et al. A perfusion-based human cadaveric model for management of carotid artery injury during endoscopic endonasal skull base surgery. J Neurol Surg B Skull Base. 2014;75(5):309–13. doi:10.1055/s-0034-1372470. This study was the first fresh cadaveric perfusion model of ICA injury which is among the most realistic models available and validated for endoscopic skull base training.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Carey JN, Minneti M, Leland HA, Demetriades D, Talving P. Perfused fresh cadavers: method for application to surgical simulation. Am J Surg. 2015;210(1):179–87. doi:10.1016/j.amjsurg.2014.10.027.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozena B. Wrobel.

Ethics declarations

Conflict of Interest

Dr. Jasper Shen, Dr. Bozena Wrobel, and Dr. Gabriel Zada declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Rhinology: Advances in Endoscopic Sinus Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Wrobel, B.B. & Zada, G. Management of Vascular Injuries During Endoscopic Skull Base Surgery: Current Strategies and Simulation-Based Educational Paradigms. Curr Otorhinolaryngol Rep 5, 35–41 (2017). https://doi.org/10.1007/s40136-017-0146-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40136-017-0146-4

Keywords

Navigation