Skip to main content

Advertisement

Log in

Doxycycline is Neuroprotective Against Nigral Dopaminergic Degeneration by a Dual Mechanism Involving MMP-3

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

In Parkinson disease (PD), the dopaminergic (DAergic) neurons in the substantia nigra undergo degeneration. While the exact mechanism for the degeneration is still not completely understood, neuronal apoptosis and inflammation are thought to play roles. We have recently obtained evidence that matrix metalloproteinase (MMP)-3 plays a crucial role in the apoptotic signal in DAergic cells as well as activation of microglia. The present study tested whether doxycycline might modulate MMP-3 and provide neuroprotection of DAergic neurons. Doxycycline effectively suppressed the expression of MMP-3 induced in response to cellular stress in the DAergic CATH.a cells. This was accompanied by protection of CATH.a cells as well as primary cultured mesencephalic DAergic neurons via attenuation of apoptosis. The active form of MMP-3, released under the cell stress condition, was also decreased in the presence of doxycycline. In addition, doxycycline led to downregulation of MMP-3 in microglial BV-2 cells exposed to lipopolysaccharide (LPS). This was accompanied by suppression of production of nitric oxide and TNF-α, as well as gene expression of iNOS, TNF-α, IL-1β, and COX-2. In vivo, doxycycline provided neuroprotection of the nigral DAergic neurons following MPTP treatment, as assessed by tyrosine hydroxylase immunocytochemistry and silver staining, and suppressed microglial activation and astrogliosis as assessed by Iba-1 and GFAP immunochemistry, respectively. Taken together, doxycycline showed neuroprotective effect on DAergic system both in vitro and in vivo and this appeared to derive from anti-apoptotic and anti-inflammatory mechanisms involving downregulation of MMP-3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersson H, Alestig K (1976) The penetration of doxycycline into CSF. Scand J Infect Dis Suppl 9:17–19

    PubMed  CAS  Google Scholar 

  • Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27:229–237

    Article  PubMed  CAS  Google Scholar 

  • Boyle JR, McDermott E, Crowther M, Willis AD, Bell PR, Thompson MM (1998) Doxycycline inhibits elastin degradation and reduces metalloproteinase activity in a model of aneurysmal disease. J Vasc Surg 27:354–361

    Article  PubMed  CAS  Google Scholar 

  • Brown DL, Desai KK, Vakili BA, Nouneh C, Lee HM, Golub LM (2004) Clinical and biochemical results of the metalloproteinase inhibition with subantimicrobial doses of doxycycline to prevent acute coronary syndromes (MIDAS) pilot trial. Arterioscler Thromb Vasc Biol 24:733–738

    Article  PubMed  CAS  Google Scholar 

  • Burggraf D, Trinkl A, Dichgans M, Hamann GF (2007) Doxycycline inhibits MMPs via modulation of plasminogen activators in focal cerebral ischemia. Neurobiol Dis 25:506–513

    Article  PubMed  CAS  Google Scholar 

  • Cauwe B, Van den Steen PE, Opdenakker G (2007) The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit Rev Biochem Mol Biol 42:113–185

    Article  PubMed  CAS  Google Scholar 

  • Charriaut-Marlangue C (2004) Apoptosis: a target for neuroprotection. Therapie 59:185–190

    Article  PubMed  Google Scholar 

  • Choi HJ, Jang YJ, Kim HJ, Hwang O (2000) Tetrahydrobiopterin is released from and causes preferential death of catecholaminergic cells by oxidative stress. Mol Pharmacol 58:633–640

    PubMed  CAS  Google Scholar 

  • Choi HJ, Kim SW, Lee SY, Hwang O (2003) Dopamine-dependent cytotoxicity of tetrahydrobiopterin: a possible mechanism for selective neurodegeneration in Parkinson’s disease. J Neurochem 86:143–152

    Article  PubMed  CAS  Google Scholar 

  • Choi HJ, Lee SY, Cho Y, Hwang O (2004) JNK activation by tetrahydrobiopterin: implication for Parkinson’s disease. J Neurosci Res 75:715–721

    Article  PubMed  CAS  Google Scholar 

  • Choi DH, Kim EM, Son HJ, Joh TH, Kim YS, Kim D, Flint Beal M, Hwang O (2008) A novel intracellular role of matrix metalloproteinase-3 during apoptosis of dopaminergic cells. J Neurochem 106:405–415

    Article  PubMed  CAS  Google Scholar 

  • Cunha BA (2006) New uses for older antibiotics: nitrofurantoin, amikacin, colistin, polymyxin B, doxycycline, and minocycline revisited. Med Clin North Am 90:1089–1107

    Article  PubMed  CAS  Google Scholar 

  • de Olmos JS, Beltramino CA, de Lorenzo S (1994) Use of an amino-cupric-silver technique for the detection of early and semiacute neuronal degeneration caused by neurotoxicants, hypoxia, and physical trauma. Neurotoxicol Teratol 16:545–561

    Article  PubMed  Google Scholar 

  • Domercq M, Matute C (2004) Neuroprotection by tetracyclines. Trends Pharmacol Sci 25:609–612

    Article  PubMed  CAS  Google Scholar 

  • Fox C, Dingman A, Derugin N, Wendland MF, Manabat C, Ji S, Ferriero DM, Vexler ZS (2005) Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 25:1138–1149

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson-Beadling S, Powers EA, Stamp-Cole M, Scott PS, Wallace TL, Copeland J, Petzold G, Mitchell M, Ledbetter S, Poorman R (1995) The tetracycline analogs minocycline and doxycycline inhibit angiogenesis in vitro by a non-metalloproteinase-dependent mechanism. Cancer Chemother Pharmacol 36:418–424

    Article  PubMed  CAS  Google Scholar 

  • Golub LM, Evans RT, McNamara TF, Lee HM, Ramamurthy NS (1994) Non-antimicrobial tetracycline inhibits gingival matrix metalloproteinases in Porphyromonas gingivalis-induced periodontitis in rats. Ann NY Acad Sci 732:96–111

    Article  PubMed  CAS  Google Scholar 

  • Hwang O, Baker H, Gross S, Joh TH (1998) Localization of GTP cyclohydrolase in monoaminergic but not nitric oxide-producing cells. Synapse 28:140–153

    Article  PubMed  CAS  Google Scholar 

  • Jantzie LL, Cheung PY, Todd KG (2005) Doxycycline reduces cleaved caspase-3 and microglial activation in an animal model of neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 25:314–324

    Article  PubMed  CAS  Google Scholar 

  • Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316

    PubMed  CAS  Google Scholar 

  • Kim ST, Choi JH, Chang JW, Kim SW, Hwang O (2005a) Immobilization stress causes increases in tetrahydrobiopterin, dopamine, and neuromelanin and oxidative damage in the nigrostriatal system. J Neurochem 95:89–98

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Kim SS, Cho JJ, Choi DH, Hwang O, Shin DH, Chun HS, Beal MF, Joh TH (2005b) Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J Neurosci 25:3701–3711

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Choi JH, Kim D, Hwang O (2006) Increased tyrosine hydroxylase and neuromelanin in the SN of middle aged mice. Neurosci Lett 396:263–268

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Choi DH, Block ML, Lorenzl S, Yang L, Kim YJ, Sugama S, Cho BP, Hwang O, Browne SE, Kim SY, Hong JS, Beal MF, Joh TH (2007) A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J 21:179–187

    Article  PubMed  CAS  Google Scholar 

  • Kraus RL, Pasieczny R, Lariosa-Willingham K, Turner MS, Jiang A, Trauger JW (2005) Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity. J Neurochem 94:819–827

    Article  PubMed  CAS  Google Scholar 

  • Lai AY, Todd KG (2006) Hypoxia-activated microglial mediators of neuronal survival are differentially regulated by tetracyclines. Glia 53:809–816

    Article  PubMed  Google Scholar 

  • Lee SY, Moon Y, Hee Choi D, Jin Choi H, Hwang O (2007) Particular vulnerability of rat mesencephalic dopaminergic neurons to tetrahydrobiopterin: Relevance to Parkinson’s disease. Neurobiol Dis 25:112–120

    Article  PubMed  CAS  Google Scholar 

  • Mohri I, Taniike M, Taniguchi H, Kanekiyo T, Aritake K, Inui T, Fukumoto N, Eguchi N, Kushi A, Sasai H, Kanaoka Y, Ozono K, Narumiya S, Suzuki K, Urade Y (2006) Prostaglandin D2-mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher. J Neurosci 9:4383–4393

    Article  CAS  Google Scholar 

  • Mun-Bryce S, Lukes A, Wallace J, Lukes-Marx M, Rosenberg GA (2002) Stromelysin-1 and gelatinase A are upregulated before TNF-alpha in LPS-stimulated neuroinflammation. Brain Res 933:42–49

    Article  PubMed  CAS  Google Scholar 

  • NINDS NET-PD Investigators (2008) A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results. Clin Neuropharmacol 31:141–150

    Article  CAS  Google Scholar 

  • Nuttall RK, Silva C, Hader W, Bar-Or A, Patel KD, Edwards DR, Yong VW (2007) Metalloproteinases are enriched in microglia compared with leukocytes and they regulate cytokine levels in activated microglia. Glia 55:516–526

    Article  PubMed  Google Scholar 

  • Prall AK, Longo GM, Mayhan WG, Waltke EA, Fleckten B, Thompson RW, Baxter BT (2002) Doxycycline in patients with abdominal aortic aneurysms and in mice: Comparison of serum levels and effect on aneurysm growth in mice. J Vasc Surgery 35:923–929

    Article  Google Scholar 

  • Röhl C, Lucius R, Sievers J (2007) The effect of activated microglia on astrogliosis parameters in astrocyte cultures. Brain Res 1129:43–52

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    Article  PubMed  Google Scholar 

  • Sanchez-Pernaute R, Ferree A, Cooper O, Yu M, Brownell AL, Isacson O (2004) Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J Neuroinflammation 1:6

    Article  PubMed  Google Scholar 

  • Sapadin AN, Fleischmajer R (2006) Tetracyclines: nonantibiotic properties and their clinical implications. Am Acad Dermatol 54:258–265

    Article  Google Scholar 

  • Seo JW, Srisook E, Son HJ, Hwang O, Cha YN, Chi DY (2005) Syntheses of NAMDA derivatives inhibiting NO production in BV-2 cells stimulated with lipopolysaccharide. Bioorg Med Chem Lett 15:3369–3373

    Article  PubMed  CAS  Google Scholar 

  • Smith K, Leyden JJ (2005) Safety of doxycycline and minocycline: a systematic review. Clin Ther 27:1329–1342

    Article  PubMed  CAS  Google Scholar 

  • Smith VA, Khan-Lim D, Anderson L, Cook SD, Dick AD (2008) Does orally administered doxycycline reach the tear film? Br J Ophthalmol 92:856–859

    Article  PubMed  CAS  Google Scholar 

  • Soory M (2008) A role for non-antimicrobial actions of tetracyclines in combating oxidative stress in periodontal and metabolic diseases: a literature review. Open Dent J 2:5–12

    Article  PubMed  CAS  Google Scholar 

  • Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W (2005) Minocycline as a neuroprotective agent. Neuroscientist 11:308–322

    Article  PubMed  CAS  Google Scholar 

  • Suri C, Fung BP, Tischler AS, Chikaraishi DM (1993) Catecholaminergic cell lines from the brain and adrenal glands of tyrosine hydroxylase-SV40 T antigen transgenic mice. J Neurosci 13:1280–1291

    PubMed  CAS  Google Scholar 

  • Thomas M, Le WD, Jankovic J (2003) Minocycline and other tetracycline derivatives: a neuroprotective strategy in Parkinson’s disease and Huntington’s disease. Clin Neuropharmacol 26:18–23

    Article  PubMed  Google Scholar 

  • Toth A, Lesser ML, Naus G, Brooks C, Adams D (1988) Effect of doxycycline on pre-menstrual syndrome: a double-blind randomized clinical trial. J Int Med Res 16:270–279

    PubMed  CAS  Google Scholar 

  • Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839

    Article  PubMed  CAS  Google Scholar 

  • Walker DG, Lue LF (2005) Investigations with cultured human microglia on pathogenic mechanisms of Alzheimer’s disease and other neurodegenerative diseases. J Neurosci Res 81:412–425

    Article  PubMed  CAS  Google Scholar 

  • Woo MS, Park JS, Choi IY, Kim WK, Kim HS (2008) Inhibition of MMP-3 or -9 suppresses lipopolysaccharide-induced expression of proinflammatory cytokines and iNOS in microglia. J Neurochem 106:770–780

    Article  PubMed  CAS  Google Scholar 

  • Yao JS, Shen F, Young WL, Yang GY (2007) Comparison of doxycycline and minocycline in the inhibition of VEGF-induced smooth muscle cell migration. Neurochem Int 50:524–530

    Article  PubMed  CAS  Google Scholar 

  • Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 95:15769–15774

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Hu X, Qian L, Wilson B, Lee C, Flood P, Langenbach R, Hong JS (2009) Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro. Toxicol Appl Pharmacol 238(1):64–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Brain Research Center of the 21st Century Frontier Research Program of the Ministry of Science & Technology (2009K0012510) to O. Hwang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onyou Hwang.

Additional information

Yuri Cho and Hyo Jin Son contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, Y., Son, H.J., Kim, EM. et al. Doxycycline is Neuroprotective Against Nigral Dopaminergic Degeneration by a Dual Mechanism Involving MMP-3. Neurotox Res 16, 361–371 (2009). https://doi.org/10.1007/s12640-009-9078-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9078-1

Keywords

Navigation