Skip to main content
Log in

Genetic diversity and differentiation of Sclerotinia sclerotiorum populations in sunflower

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Ninety-six isolates of sunflower Sclerotinia sclerotiorum (Lib.) de Bary from Inner Mongolia (IM) in China, from Canada and the United Kingdom (UK) were sampled to investigate the genetic diversity and structure using Sequence-Related Amplified Polymorphism. A total of 123 polymorphic bands were obtained, ranging in size from 100 to 500 base pairs. The five populations of S. sclerotiorum isolated from the three countries showed various levels of genetic variability. The percentage of polymorphic loci varied from 30.89% in the UK population to 97.56% in the Middle IM population. The values of Shannon index (i) varied from 0.1876 in the UK population to 0.5301 in the West IM population. The heterozygosity of the five geographic populations obtained by estimating allele frequency varied from 12.91% in the UK population to 35.44% in the West IM population. The genetic identity, as indicated by the Nei unbiased identity index, ranged from 0.9744 between populations from Canada and East IM to 0.6477 between populations from West IM and UK. UPGMA cluster analysis using Nei’s genetic distance gave distances ranging from 0.0259 to 0.4343. The rates of gene flow among five geographic populations ranged from 1.5406 between West IM and UK populations to 18.4149 between West IM and Middle IM populations. The four populations from West IM, Middle IM, East IM and Canada were clustered into one subgroup in which the isolates from West and Middle IM belonged to one population, whereas those from East IM and Canada essentially were another population. The isolates from the UK formed a population that was significantly distinct from other populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alvarez, E., & Molina, M. L. (2000). Characterizing the Sphaceloma fungus, causal agent of super-elongation disease in Cassava. Plant Disease, 84, 423–428.

    Article  Google Scholar 

  • Atallah, Z. K., Larget, B., Chen, X., & Johnson, D. A. (2004). High genetic diversity, phenotypic uniformity, and evidence of outcrossing in Sclerotinia sclerotiorum in the Columbia Basin of Washington State. Phytopathology, 94, 737–742.

    Article  PubMed  CAS  Google Scholar 

  • Auclair, J., Boland, G. J., Kohn, L. M., & Rajcan, I. (2004). Genetic interactions between Glycine max and Sclerotinia sclerotiorum using a straw inoculation method. Plant Disease, 88, 891–895.

    Article  Google Scholar 

  • Boland, G. J., & Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16, 93–108.

    Google Scholar 

  • Bowden, R. L., & Leslie, J. F. (1999). Sexual recombination in Gibberella zeae. Phytopathology, 89, 182–188.

    Article  PubMed  CAS  Google Scholar 

  • Carbone, I., Anderson, J. B., & Kohn, L. M. (1999). Patterns of descent in clonal lineages and their multilocus fingerprints are resolved with combined gene genealogies. Evolution, 53, 11–21.

    Article  CAS  Google Scholar 

  • Cubeta, M. A., Cody, B. R., Kohli, Y., & Kohn, L. M. (1997). Clonality in Sclerotinia sclerotiorum on infected cabbage in eastern North Carolina. Phytopathology, 87, 1000–1004.

    Article  PubMed  CAS  Google Scholar 

  • Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Fernando, W. G. D., Zhang, J. X., Dusabenyagasani, M., Guo, X. W., & Ahmed, H. (2006). Genetic diversity of Gibberella zeae isolates from Manitoba. Plant Disease, 90, 1337–1342.

    Article  CAS  Google Scholar 

  • González, M., Rodríguez, R., Zavala, M. E., Jacobo, J. L., Hernández, F., Acosta, J., et al. (1998). Characterization of Mexican isolates of Colletotrichum lindemuthianum by using differential cultivars and molecular markers. Phytopathology, 88, 292–299.

    Article  PubMed  Google Scholar 

  • Hambleton, S., Walker, C., & Kohn, L. M. (2002). Clonal lineages of Sclerotinia sclerotiorum previously known from other crops predominate in 1999–2000 samples from Ontario and Quebec soybean. Canadian Journal of Plant Pathology, 24, 309–315.

    Google Scholar 

  • Kohli, Y., Brunner, L. J., Yoel, H., Milgroom, M. G., Anderson, J. B., Morrall, R. A. A., et al. (1995). Clonal dispersal and spatial mixing in populations of the plant pathogenic fungus, Sclerotinia sclerotiorum. Molecular Ecology, 4, 69–77.

    Article  Google Scholar 

  • Kohn, L. M., Stasovski, E., Carbone, I., Royer, J., & Anderson, J. B. (1991). Mycelial incompatibility and molecular markers identify genetic variability in field populations of Sclerotinia sclerotiorum. Phytopathology, 81, 480–485.

    Article  Google Scholar 

  • Kull, L. S., Pederson, W. L., Palmquist, D., & Hartman, G. L. (2004). Mycelial compatibility groupings and aggressiveness of Sclerotinium sclerotiorum. Plant Disease, 88, 325–332.

    Article  Google Scholar 

  • Li, G., & Quiros, C. F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 103, 455–461.

    Article  CAS  Google Scholar 

  • Li, Z. Q. (2004). Sunflower diseases and control in Inner Mongolia. Inner Mongolia Agricultural Science and Technology, 6, 63–64 (Chinese, with English abstract).

    Google Scholar 

  • Mert-Türk, F., Ipek, M., Mermer, D., & Nicholson, P. (2007). Microsatellite and morphological markers reveal genetic variation within a population of Sclerotinia sclerotiorum from oilseed rape in the Canakkale Province of Turkey. Phytopathology, 155, 182–187.

    Article  Google Scholar 

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70, 3321–3323.

    Article  PubMed  CAS  Google Scholar 

  • Raymond, M. L., & Rousset, F. (1995). An exact test for population of the Irish potato famine pathogen from historic specimens. Nature, 411, 695–697.

    Google Scholar 

  • Sexton, A. C., & Howlett, B. J. (2004). Microsatellite markers reveal genetic differentiation among populations of Sclerotinia sclerotiorum from Australian canola fields. Current Genetics, 46, 357���365.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL, USA: University of Illinois Press.

    Google Scholar 

  • Sirjusingh, C., & Kohn, L. M. (2001). Characterization of microsatellites in the fungal plant pathogen, Sclerotinia sclerotiorum. Molecular Ecology Notes, 1, 267–269.

    Article  CAS  Google Scholar 

  • Slatkin, M. (1987). Gene flow and geographic structure of natural populations. Science, 236, 787–792.

    Article  PubMed  CAS  Google Scholar 

  • Slatkin, M., & Barton, N. H. (1989). A comparison of three indirect methods for estimating average level of gene flow. Evolution, 43, 1349–1368.

    Article  Google Scholar 

  • Sun, J., Irzykowski, W., Jedryczka, M., & Han, F. (2005). Analysis of the genetic structure of Sclerotinia sclerotiorum populations from different regions and host plants by RAPD markers. Journal of Integrative Plant Biology, 47, 385–395.

    Article  CAS  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., et al. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S. B., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninisky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). San Diego, CA, USA: Academic.

    Google Scholar 

  • Woo, S. L., Noviello, C., & Lorito, M. (1998). Sources of molecular variability and applications in characterization of the plant pathogen Fusarium oxysporum. In P. D. Bridge, Y. Couteaudier, & J. M. Clarkson (Eds.), Molecular variability of fungal pathogens (pp. 187–208). Wallingford, UK: CAB International.

    Google Scholar 

  • Wright, S. (1978). Evolution and the genetics of populations. Vol. 4, Variability within and among natural populations. Chicago, IL, USA: University of Chicago Press.

    Google Scholar 

  • Yu, X., Wang, G., & Zhang, N. (2006). The polymorphism of nuclear DNA of Sclerotinia sclerotiorum from different areas in our country. Journal of Hebei North University (Natural Science Edition), 122(16), 24–26.

    Google Scholar 

  • Zhang, J. X., Fernando, W. G. D., & Remphrey, W. R. (2005). Genetic diversity and structure of the Apiosporina morbosa populations on Prunus spp. Phytopathology, 95, 859–866.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the NSERC Discovery grant (W.G.D.F.) and Inner Mongolia Natural Science Foundation, China (200607010308), for funding this research. We thank Dr. Gengyi Li (University of Manitoba, Canada) for his technical advice on sequence-related amplified polymorphism and for allowing us to use the ABI analyzer; Paula Parks for her help in the laboratory; and Dr. Jon West (Rothamsted Research, UK) for critically reviewing the manuscript and for providing the samples of Sclerotinia sclerotiorum from the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Dilantha Fernando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Wang, Y., Chen, Y. et al. Genetic diversity and differentiation of Sclerotinia sclerotiorum populations in sunflower. Phytoparasitica 37, 77–85 (2009). https://doi.org/10.1007/s12600-008-0003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-008-0003-6

Keywords

Navigation