Skip to main content
Log in

Comamonas granuli sp. nov., isolated from granules used in a wastewater treatment plant

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

A Gram-negative, motile, rod-shaped, non-spore-forming bacterial strain, designated as Ko03T, was isolated from microbial granules, and was characterized, using a polyphasic approach, in order to determine its taxonomic position. The isolate was positive for catalase and oxidase, but negative for gelatinase and β-galactosidase. Phylogenetic analyses using the 16S rRNA gene sequence showed that the strain formed a monophyletic branch towards the periphery of the evolutionary radiation occupied by the genus Comamonas, its closest neighbors being Comamonas koreensis KCTC 12005T (95.9% sequence similarity), Comamonas nitrativorans DSM 13191T (95.7%), and Comamonas odontotermitis LMG 23579T (95.7%). Strain Ko03T had a genomic DNA G+C content of 68.4 mol% and the predominant respiratory quinone was Q-8. The major fatty acids were C16:1 ω7c (44.7%), C16:0 (28.1%), C18:1 (16.1%), and C10:0 3-OH (3.5%). These chemo-taxonomic results supported the affiliation of strain Ko03T to the genus Comamonas. However, low 16S rRNA gene sequence similarity values and distinguishing phenotypic characteristics allowed genotypic and phenotypic differentiation of strain Ko03T from recognized Comamonas species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Ko03T represents a novel species of the genus Comamonas, for which the name Comamonas granuli sp. nov. is proposed. The type strain is Ko03T (= KCTC 12199T = NBRC 101663T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.

    PubMed  CAS  Google Scholar 

  • Cappuccino, J.G. and N. Sherman. 2002. Microbiology: a laboratory manual, 6th ed. Pearson Education, Inc., California, USA.

    Google Scholar 

  • Chang, Y.H., J.I. Han, J. Chun, K.C. Lee, M.S. Rhee, Y.B. Kim, and K.S. Bae. 2002. Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int. J. Syst. Evol. Microbiol. 52, 377–381.

    PubMed  CAS  Google Scholar 

  • Chou, J.H., S.Y. Sheu, K.Y. Lin, W.M. Chen, A.B. Arun, and C.C. Young. 2007. Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus. Int. J. Syst. Evol. Microbiol. 57, 887–891.

    Article  PubMed  CAS  Google Scholar 

  • Collins, M.D. and D. Jones. 1981. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J. Appl. Bacteriol. 51, 129–134.

    PubMed  CAS  Google Scholar 

  • Davis, G.H. and R.W. Park. 1962. A taxonomic study of certain bacteria currently classified as Vibrio species. J. Gen. Microbiol. 27, 101–119.

    PubMed  CAS  Google Scholar 

  • De Vos, P., K. Kersters, E. Falsen, B. Pot, M. Gillis, P. Segers, and J. De Ley. 1985. Comamonas Davis and Park 1962 gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962 sp. nov., nom. rev.. Int. J. Syst. Bacteriol. 35, 443–453.

    Google Scholar 

  • Etchebehere, C., M.I. Errazquin, P. Dabert, R. Moletta, and L. Muxi. 2001. Comamonas nitrativorans sp. nov., a novel denitrifier isolated from a denitrifying reactor treating landfill leachate. Int. J. Syst. Evol. Microbiol. 51, 977–983.

    PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Fitch, W.M. 1972. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  • Gumaelius, L., G. Magnusson, B. Pettersson, and G. Dalhammar. 2001. Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 51, 999–1006.

    PubMed  CAS  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Kim, M.K., W.T. Im, H. Ohta, M. Lee, and S.T. Lee. 2005. Sphingopyxis granuli sp. nov., a β-glucosidase producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J. Microbiol. 43, 152–157.

    PubMed  CAS  Google Scholar 

  • Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge: Cambridge University Press, Cambridge, New York, N.Y., USA.

    Google Scholar 

  • Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150–163.

    Article  PubMed  CAS  Google Scholar 

  • Lim, Y.W., S.A. Lee, S.B. Kim, H.Y. Yong, S.H. Yeon, Y.K. Park, D.W. Jeong, and J.S. Park. 2005. Diversity of denitrifying bacteria isolated from Daejeon sewage treatment plant. J. Microbiol. 45, 383–390.

    Google Scholar 

  • Mesbah, M., U. Premachandran, and W. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.

    CAS  Google Scholar 

  • Moore, D.D. and D. Dowhan. 1995. Preparation and analysis of DNA, p. 2–11. In F.W. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl (eds.), Current protocols in molecular biology. Wiley, New York, N.Y., USA.

    Google Scholar 

  • Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.

    Google Scholar 

  • Stackebrandt, E. and B.M. Goebel. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.

    Article  CAS  Google Scholar 

  • Tago, Y. and A. Yokota. 2004. Comamonas badia sp. nov., a floc-forming bacterium isolated from activated sludge. J. Gen. Appl. Microbiol. 50, 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Tamaoka, J., D.M. Ha, and K. Komagata. 1987. Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb, nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol. 37, 52–59.

    Google Scholar 

  • Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876–4882.

    Article  Google Scholar 

  • Wauters, G., T. De Baere, A. Willems, E. Falsen, and M. Vaneechoutte. 2003. Description of Comamonas aquatica comb. nov. and Comamonas kerstersii sp. nov. for two subgroups of Comamonas terrigena and emended description of Comamonas terrigena. Int. J. Syst. Evol. Microbiol. 53, 859–862.

    Article  PubMed  CAS  Google Scholar 

  • Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, W.E.C. Moore, R.G.E. Murray, E. Stackebrandt, M.P. Starr, and H.G. Truper. 1987. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.

    Google Scholar 

  • Wen, A., M. Fegan, C. Hayward, S. Chakraborty, and L.I. Sly. 1999. Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int. J. Syst. Bacteriol. 49, 567–576.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Taek Im.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KH., Ten, L.N., Liu, QM. et al. Comamonas granuli sp. nov., isolated from granules used in a wastewater treatment plant. J Microbiol. 46, 390–395 (2008). https://doi.org/10.1007/s12275-008-0019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-008-0019-0

Keywords

Navigation