Skip to main content

Advertisement

Log in

Coenzyme Q10 Ameliorates Neurodegeneration, Mossy Fiber Sprouting, and Oxidative Stress in Intrahippocampal Kainate Model of Temporal Lobe Epilepsy in Rat

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Temporal lobe epilepsy (TLE) is the most common form of epilepsy in adults and the most resistant type to treatment. Novel treatment approaches are strongly required to prevent or even reverse the cellular and molecular mechanisms of epileptogenesis. In this study, we investigated the possible neuroprotective effect of coenzyme Q10 (CoQ10) in an intrahippocampal kainate model of TLE in rat. Kainate injection caused a higher seizure severity during status epilepticus and spontaneous seizure phases, and CoQ10 pretreatment significantly attenuated its severity and incidence rate. Intrahippocampal kainate also led to elevation of malondialdehyde (MDA) and nitrite, and CoQ10 significantly attenuated the increased MDA and nitrite content. In addition, intrahippocampal kainate induced a significant degeneration of neurons in CA1, CA3, and hilar regions of the hippocampus, and CoQ10 significantly attenuated these changes in CA1 and CA3 regions. Timm’s staining data showed a robust mossy fiber sprouting (MFS) in dentate gyrus of kainate-lesioned rats and CoQ10 significantly lowered MFS intensity. These data suggest that CoQ10 pretreatment could attenuate spontaneous recurrent seizures and inhibit hippocampal neuronal loss and aberrant MFS in kainate-induced model of TLE in rat, and part of its beneficial effect is due to its potential to mitigate oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdin AA, Hamouda HE (2008) Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism. Neuropharmacology 55:1340–1346

    Article  PubMed  CAS  Google Scholar 

  • Baluchnejadmojarad T, Roghani M (2011) Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress. Behav Brain Res 224:305–310

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Cossart R (2000) Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 23:580–587

    Article  PubMed  CAS  Google Scholar 

  • Bonakdar RA, Guarneri E (2005) Coenzyme Q10. Am Fam Physician 72:1065–1070

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chuang YC, Chen SD, Liou CW, Lin TK, Chang WN, Chan SH et al (2009) Contribution of nitric oxide, superoxide anion, and peroxynitrite to activation of mitochondrial apoptotic signaling in hippocampal CA3 subfield following experimental temporal lobe status epilepticus. Epilepsia 50:731–746

    Article  PubMed  CAS  Google Scholar 

  • Ciceri P, Zhang Y, Shaffer AF, Leahy KM, Woerner MB, Smith WG et al (2002) Pharmacology of celecoxib in rat brain after kainate administration. J Pharmacol Exp Ther 302:846–852

    Article  PubMed  CAS  Google Scholar 

  • Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157

    Article  PubMed  CAS  Google Scholar 

  • Dichter MA (2006) Models of epileptogenesis in adult animals available for antiepileptogenesis drug screening. Epilepsy Res 68:31–35

    Article  PubMed  Google Scholar 

  • Jokeit H, Schacher M (2004) Neuropsychological aspects of type of epilepsy and etiological factors in adults. Epilepsy Behav 5(Suppl 1):S14–S20

    Article  PubMed  Google Scholar 

  • Jourquin J, Tremblay E, Decanis N, Charton G, Hanessian S, Chollet AM et al (2003) Neuronal activity-dependent increase of net matrix metalloproteinase activity is associated with MMP-9 neurotoxicity after kainate. Eur J Neurosci 18:1507–1517

    Article  PubMed  Google Scholar 

  • Karoly N, Mihaly A, Dobo E (2011) Comparative immunohistochemistry of synaptic markers in the rodent hippocampus in pilocarpine epilepsy. Acta Histochem 113:656–662

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  PubMed  CAS  Google Scholar 

  • Littarru GP, Tiano L (2007) Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol 37:31–37

    Article  PubMed  CAS  Google Scholar 

  • Liu CH, Lin YW, Tang NY, Liu HJ, Hsieh CL (2012) Neuroprotective effect of Uncaria rhynchophylla in kainic acid-induced epileptic seizures by modulating hippocampal mossy fiber sprouting, neuron survival, astrocyte proliferation, and S100B expression. Evid Based Complement Alternat Med 2012:194790

    PubMed  Google Scholar 

  • Loscher W (2002) Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 50:105–123

    Article  PubMed  CAS  Google Scholar 

  • Loscher W, Schmidt D (2006) New horizons in the development of antiepileptic drugs: innovative strategies. Epilepsy Res 69:183–272

    Article  PubMed  Google Scholar 

  • Mancuso M, Orsucci D, Volpi L, Calsolaro V, Siciliano G (2010) Coenzyme Q10 in neuromuscular and neurodegenerative disorders. Curr Drug Targets 11:111–121

    Article  PubMed  CAS  Google Scholar 

  • Mulle C, Sailer A, Perez-Otano I, Dickinson-Anson H, Castillo PE, Bureau I et al (1998) Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 392:601–605

    Article  PubMed  CAS  Google Scholar 

  • Orsucci D, Mancuso M, Ienco EC, LoGerfo A, Siciliano G (2011) Targeting mitochondrial dysfunction and neurodegeneration by means of coenzyme Q10 and its analogues. Curr Med Chem 18:4053–4064

    Article  PubMed  CAS  Google Scholar 

  • Papucci L, Schiavone N, Witort E, Donnini M, Lapucci A, Tempestini A et al (2003) Coenzyme Q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 278:28220–28228

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. 2nd ed., Academic, San Diego.

  • Racine R, Okujava V, Chipashvili S (1972) Modification of seizure activity by electrical stimulation. 3. Mechanisms. Electroencephalogr Clin Neurophysiol 32:295–299

    Article  PubMed  CAS  Google Scholar 

  • Rauscher FM, Sanders RA, Watkins JB 3rd (2001) Effects of coenzyme Q10 treatment on antioxidant pathways in normal and streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 15:41–46

    Article  PubMed  CAS  Google Scholar 

  • Roghani M, Baluchnejadmojarad T (2009) Chronic epigallocatechin-gallate improves aortic reactivity of diabetic rats: underlying mechanisms. Vascul Pharmacol 51:84–89

    Article  PubMed  CAS  Google Scholar 

  • Russo R, Cavaliere F, Rombola L, Gliozzi M, Cerulli A, Nucci C et al (2008) Rational basis for the development of coenzyme Q10 as a neurotherapeutic agent for retinal protection. Prog Brain Res 173:575–582

    Article  PubMed  CAS  Google Scholar 

  • Sandhu JK, Pandey S, Ribecco-Lutkiewicz M, Monette R, Borowy-Borowski H, Walker PR et al (2003) Molecular mechanisms of glutamate neurotoxicity in mixed cultures of NT2-derived neurons and astrocytes: protective effects of coenzyme Q10. J Neurosci Res 72:691–703

    Article  PubMed  CAS  Google Scholar 

  • Schmelzer C, Lindner I, Rimbach G, Niklowitz P, Menke T, Doring F (2008) Functions of coenzyme Q10 in inflammation and gene expression. Biofactors 32:179–183

    Article  PubMed  CAS  Google Scholar 

  • Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW (2007) Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol Pathol 35:984–999

    Article  PubMed  Google Scholar 

  • Shetty AK, Hattiangady B (2007) Restoration of calbindin after fetal hippocampal CA3 cell grafting into the injured hippocampus in a rat model of temporal lobe epilepsy. Hippocampus 17:943–956

    Article  PubMed  Google Scholar 

  • Shin EJ, Ko KH, Kim WK, Chae JS, Yen TP, Kim HJ et al (2008) Role of glutathione peroxidase in the ontogeny of hippocampal oxidative stress and kainate seizure sensitivity in the genetically epilepsy-prone rats. Neurochem Int 52:1134–1147

    Article  PubMed  CAS  Google Scholar 

  • Sperk G (1994) Kainic acid seizures in the rat. Prog Neurobiol 42:1–32

    Article  PubMed  CAS  Google Scholar 

  • Stefan H, Lopes da Silva FH, Loscher W, Schmidt D, Perucca E, Brodie MJ et al (2006) Epileptogenesis and rational therapeutic strategies. Acta Neurol Scand 113:139–155

    Article  PubMed  CAS  Google Scholar 

  • Tawfik MK (2011) Coenzyme Q10 enhances the anticonvulsant effect of phenytoin in pilocarpine-induced seizures in rats and ameliorates phenytoin-induced cognitive impairment and oxidative stress. Epilepsy Behav 22:671–677

    Article  PubMed  Google Scholar 

  • Won R, Lee KH, Lee BH (2011) Coenzyme Q10 protects neurons against neurotoxicity in hippocampal slice culture. Neuroreport 22:721–726

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Xu Q, Zhang L, Kong D, Ma R, Wang L (2009) Protective effect of resveratrol against kainate-induced temporal lobe epilepsy in rats. Neurochem Res 34:1393–1400

    Article  PubMed  CAS  Google Scholar 

  • Yalcin A, Kilinc E, Kocturk S, Resmi H, Sozmen EY (2004) Effect of melatonin cotreatment against kainic acid on coenzyme Q10, lipid peroxidation and Trx mRNA in rat hippocampus. Int J Neurosci 114:1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ et al (2009) Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem 109:1427–1439

    Article  PubMed  CAS  Google Scholar 

  • Young AJ, Johnson S, Steffens DC, Doraiswamy PM (2007) Coenzyme Q10: a review of its promise as a neuroprotectant. CNS Spectr 12:62–68

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded and supported by Tehran University of Medical Sciences, grant no. 89-04-30-12429.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tourandokht Baluchnejadmojarad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baluchnejadmojarad, T., Roghani, M. Coenzyme Q10 Ameliorates Neurodegeneration, Mossy Fiber Sprouting, and Oxidative Stress in Intrahippocampal Kainate Model of Temporal Lobe Epilepsy in Rat. J Mol Neurosci 49, 194–201 (2013). https://doi.org/10.1007/s12031-012-9886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9886-2

Keywords

Navigation