Skip to main content
Log in

Updates in the Management of Cephalosporin-Resistant Gram-Negative Bacteria

  • Antimicrobial Development and Drug Resistance (A Pakyz, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Resistance to cephalosporins is now common among Gram-negative bacterial infections, including those caused by the Enterobacteriaceae and Pseudomonas aeruginosa, posing a major threat to public health. As resistance to the traditional drugs of choice for these infections, carbapenems, has also become increasingly common, interest in cefepime and piperacillin-tazobactam as carbapenem-sparing alternatives has increased. Additionally, the availability of the novel β-lactam-β-lactamase inhibitor combinations ceftolozane-tazobactam and ceftazidime-avibactam has added to the antimicrobial armamentarium available to treat these multidrug-resistant infections. Here, we review the recent literature on the use of carbapenem-sparing alternatives and highlight the potential utility of novel antimicrobials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ammerlaan HS, Harbarth S, Buiting AG, Crook DW, Fitzpatrick F, Hanberger H, et al. Secular trends in nosocomial bloodstream infections: antibiotic-resistant bacteria increase the total burden of infection. Clin Infect Dis. 2013;56(6):798–805. doi:10.1093/cid/cis1006.

    Article  CAS  PubMed  Google Scholar 

  2. See I, Freifeld AG, Magill SS. Causative organisms and associated antimicrobial resistance in healthcare-associated, central line-associated bloodstream infections from oncology settings, 2009–2012. Clin Infect Dis. 2016;62(10):1203–9. doi:10.1093/cid/ciw113.

    Article  PubMed  Google Scholar 

  3. U.S. Centers for Diseases Control and Prevention. Antibiotic resistance threats in the United States, 2013. http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. Accessed 14 Aug 2016.

  4. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–208. doi:10.1056/NEJMoa1306801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tumbarello M, Spanu T, Di Bidino R, Marchetti M, Ruggeri M, Trecarichi EM, et al. Costs of bloodstream infections caused by Escherichia coli and influence of extended-spectrum-beta-lactamase production and inadequate initial antibiotic therapy. Antimicrob Agents Chemother. 2010;54(10):4085–91. doi:10.1128/AAC.00143-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Micek ST, Wunderink RG, Kollef MH, Chen C, Rello J, Chastre J, et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care. 2015;19:219. doi:10.1186/s13054-015-0926-5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sader HS, Castanheira M, Mendes RE, Flamm RK, Farrell DJ, Jones RN. Ceftazidime-avibactam activity against multidrug-resistant Pseudomonas aeruginosa isolated in U.S. medical centers in 2012 and 2013. Antimicrob Agents Chemother. 2015;59(6):3656–9. doi:10.1128/AAC.05024-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Farrell DJ, Sader HS, Flamm RK, Jones RN. Ceftolozane/tazobactam activity tested against Gram-negative bacterial isolates from hospitalised patients with pneumonia in US and European medical centres (2012). Int J Antimicrob Agents. 2014;43(6):533–9. doi:10.1016/j.ijantimicag.2014.01.032.

    Article  CAS  PubMed  Google Scholar 

  9. Flamm RK, Farrell DJ, Sader HS, Jones RN. Ceftazidime/avibactam activity tested against Gram-negative bacteria isolated from bloodstream, pneumonia, intra-abdominal and urinary tract infections in US medical centres (2012). J Antimicrob Chemother. 2014;69(6):1589–98. doi:10.1093/jac/dku025.

    Article  CAS  PubMed  Google Scholar 

  10. Sader HS, Castanheira M, Flamm RK, Huband MD, Jones RN. Ceftazidime-avibactam activity against aerobic gram negative organisms isolated from intra-abdominal infections in United States hospitals, 2012–2014. Surg Infect (Larchmt). 2016;17(4):473–8. doi:10.1089/sur.2016.036.

    Article  Google Scholar 

  11. Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23(1):160–201. doi:10.1128/CMR.00037-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657–86. doi:10.1128/CMR.18.4.657-686.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gutierrez-Gutierrez B, Perez-Galera S, Salamanca E, de Cueto M, Calbo E, Almirante B, et al. A multinational, preregistered cohort study of beta-lactam/beta-lactamase inhibitor combinations for treatment of bloodstream infections due to extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;60(7):4159–69. doi:10.1128/AAC.00365-16. This multicenter, retrospective cohort study showed no difference in outcomes for patients treated with β-lactam/β-lactamase inhibitors or carbapenems for bloodstream infections caused by ESBL-producing Enterobacteriaceae.

    Article  CAS  PubMed  Google Scholar 

  14. Karlowsky JA, Adam HJ, Baxter MR, Lagace-Wiens PR, Walkty AJ, Hoban DJ, et al. In vitro activity of ceftaroline-avibactam against gram-negative and gram-positive pathogens isolated from patients in Canadian hospitals from 2010 to 2012: results from the CANWARD surveillance study. Antimicrob Agents Chemother. 2013;57(11):5600–11. doi:10.1128/AAC.01485-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Endimiani A, Perez F, Bonomo RA. Cefepime: a reappraisal in an era of increasing antimicrobial resistance. Expert Rev Anti Infect Ther. 2008;6(6):805–24. doi:10.1586/14787210.6.6.805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Castanheira M, Mills JC, Farrell DJ, Jones RN. Mutation-driven beta-lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible Pseudomonas aeruginosa isolates from U.S. hospitals. Antimicrob Agents Chemother. 2014;58(11):6844–50. doi:10.1128/AAC.03681-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Castanheira M, Mendes RE, Jones RN, Sader HS. Changes in the frequencies of beta-lactamase genes among Enterobacteriaceae isolates in U.S. hospitals, 2012 to 2014: activity of ceftazidime-avibactam tested against beta-lactamase-producing isolates. Antimicrob Agents Chemother. 2016;60(8):4770–7. doi:10.1128/AAC.00540-16.

    Article  CAS  PubMed  Google Scholar 

  18. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610. doi:10.1128/CMR.00040-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res. 2010;10(4):441–51. doi:10.1586/erp.10.49.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–76. doi:10.1128/AAC.01009-09.

    Article  CAS  PubMed  Google Scholar 

  21. Evans BA, Amyes SG. OXA beta-lactamases. Clin Microbiol Rev. 2014;27(2):241–63. doi:10.1128/CMR.00117-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Woerther PL, Burdet C, Chachaty E, Andremont A. Trends in human fecal carriage of extended-spectrum beta-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev. 2013;26(4):744–58. doi:10.1128/CMR.00023-13.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents. 2015;45(6):568–85. doi:10.1016/j.ijantimicag.2015.03.001.

    Article  CAS  PubMed  Google Scholar 

  24. Tian GB, Adams-Haduch JM, Bogdanovich T, Wang HN, Doi Y. PME-1, an extended-spectrum beta-lactamase identified in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55(6):2710–3. doi:10.1128/AAC.01660-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Poulou A, Grivakou E, Vrioni G, Koumaki V, Pittaras T, Pournaras S, et al. Modified CLSI extended-spectrum beta-lactamase (ESBL) confirmatory test for phenotypic detection of ESBLs among Enterobacteriaceae producing various beta-lactamases. J Clin Microbiol. 2014;52(5):1483–9. doi:10.1128/JCM.03361-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Nordmann P, Dortet L, Poirel L. Rapid detection of extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol. 2012;50(9):3016–22. doi:10.1128/JCM.00859-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dudley MN, Ambrose PG, Bhavnani SM, Craig WA, Ferraro MJ, Jones RN, et al. Background and rationale for revised clinical and laboratory standards institute interpretive criteria (breakpoints) for Enterobacteriaceae and Pseudomonas aeruginosa: I. Cephalosporins and Aztreonam. Clin Infect Dis. 2013;56(9):1301–9. doi:10.1093/cid/cit017.

    Article  PubMed  CAS  Google Scholar 

  28. Kristo I, Pitiriga V, Poulou A, Zarkotou O, Kimouli M, Pournaras S, et al. Susceptibility patterns to extended-spectrum cephalosporins among Enterobacteriaceae harbouring extended-spectrum beta-lactamases using the updated Clinical and Laboratory Standards Institute interpretive criteria. Int J Antimicrob Agents. 2013;41(4):383–7. doi:10.1016/j.ijantimicag.2012.12.003.

    Article  CAS  PubMed  Google Scholar 

  29. Heil EL, Johnson JK. Impact of CLSI breakpoint changes on microbiology laboratories and antimicrobial stewardship programs. J Clin Microbiol. 2016;54(4):840–4. doi:10.1128/JCM.02424-15.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Perez F, Bonomo RA. Editorial commentary: Bloodstream infection caused by extended-spectrum beta-lactamase-producing Gram-negative bacteria: how to define the best treatment regimen? Clin Infect Dis. 2015;60(9):1326–9. doi:10.1093/cid/civ007.

    PubMed  Google Scholar 

  31. Falagas ME, Tansarli GS, Rafailidis PI, Kapaskelis A, Vardakas KZ. Impact of antibiotic MIC on infection outcome in patients with susceptible Gram-negative bacteria: a systematic review and meta-analysis. Antimicrob Agents Chemother. 2012;56(8):4214–22. doi:10.1128/AAC.00663-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harris PN, Tambyah PA, Paterson DL. beta-lactam and beta-lactamase inhibitor combinations in the treatment of extended-spectrum beta-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis. 2015;15(4):475–85. doi:10.1016/S1473-3099(14)70950-8.

    Article  CAS  PubMed  Google Scholar 

  33. Paterson DL, Ko WC, Von Gottberg A, Casellas JM, Mulazimoglu L, Klugman KP, et al. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol. 2001;39(6):2206–12. doi:10.1128/JCM.39.6.2206-2212.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vardakas KZ, Tansarli GS, Rafailidis PI, Falagas ME. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum beta-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother. 2012;67(12):2793–803. doi:10.1093/jac/dks301.

    Article  CAS  PubMed  Google Scholar 

  35. Liu Q, Li X, Li W, Du X, He JQ, Tao C, et al. Influence of carbapenem resistance on mortality of patients with Pseudomonas aeruginosa infection: a meta-analysis. Sci Rep. 2015;5:11715. doi:10.1038/srep11715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aitken SL, Tarrand JJ, Deshpande LM, Tverdek FP, Jones AL, Shelburne SA, et al. High rates of nonsusceptibility to ceftazidime-avibactam and identification of New Delhi metallo-beta-lactamase production in Enterobacteriaceae bloodstream infections at a major cancer center. Clin Infect Dis. 2016. doi:10.1093/cid/ciw398.

    PubMed  Google Scholar 

  37. van Duin D, Kaye KS, Neuner EA, Bonomo RA. Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes. Diagn Microbiol Infect Dis. 2013;75(2):115–20. doi:10.1016/j.diagmicrobio.2012.11.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Guh AY, Bulens SN, Mu Y, Jacob JT, Reno J, Scott J, et al. Epidemiology of carbapenem-resistant enterobacteriaceae in 7 US communities, 2012–2013. JAMA. 2015;314(14):1479–87. doi:10.1001/jama.2015.12480.

    Article  CAS  PubMed  Google Scholar 

  39. Lopez-Cerero L, Picon E, Morillo C, Hernandez JR, Docobo F, Pachon J, et al. Comparative assessment of inoculum effects on the antimicrobial activity of amoxycillin-clavulanate and piperacillin-tazobactam with extended-spectrum beta-lactamase-producing and extended-spectrum beta-lactamase-non-producing Escherichia coli isolates. Clin Microbiol Infect. 2010;16(2):132–6. doi:10.1111/j.1469-0691.2009.02893.x.

    Article  CAS  PubMed  Google Scholar 

  40. Harada Y, Morinaga Y, Kaku N, Nakamura S, Uno N, Hasegawa H, et al. In vitro and in vivo activities of piperacillin-tazobactam and meropenem at different inoculum sizes of ESBL-producing Klebsiella pneumoniae. Clin Microbiol Infect. 2014;20(11):O831–9. doi:10.1111/1469-0691.12677.

    Article  CAS  PubMed  Google Scholar 

  41. Docobo-Perez F, Lopez-Cerero L, Lopez-Rojas R, Egea P, Dominguez-Herrera J, Rodriguez-Bano J, et al. Inoculum effect on the efficacies of amoxicillin-clavulanate, piperacillin-tazobactam, and imipenem against extended-spectrum beta-lactamase (ESBL)-producing and non-ESBL-producing Escherichia coli in an experimental murine sepsis model. Antimicrob Agents Chemother. 2013;57(5):2109–13. doi:10.1128/AAC.02190-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rodriguez-Bano J, Navarro MD, Retamar P, Picon E, Pascual A, ESBL-REIPI GEIH Group. beta-Lactam/beta-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis. 2012;54(2):167–74. doi:10.1093/cid/cir790.

    Article  CAS  PubMed  Google Scholar 

  43. Retamar P, Lopez-Cerero L, Muniain MA, Pascual A, Rodriguez-Bano J, ESBL-REIPI GEIH Group. Impact of the MIC of piperacillin-tazobactam on the outcome of patients with bacteremia due to extended-spectrum-beta-lactamase-producing Escherichia coli. Antimicrob Agents Chemother. 2013;57(7):3402–4. doi:10.1128/AAC.00135-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsai HY, Chen YH, Tang HJ, Huang CC, Liao CH, Chu FY, et al. Carbapenems and piperacillin/tazobactam for the treatment of bacteremia caused by extended-spectrum beta-lactamase-producing Proteus mirabilis. Diagn Microbiol Infect Dis. 2014;80(3):222–6. doi:10.1016/j.diagmicrobio.2014.07.006.

    Article  CAS  PubMed  Google Scholar 

  45. Kang CI, Park SY, Chung DR, Peck KR, Song JH. Piperacillin-tazobactam as an initial empirical therapy of bacteremia caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. J Infect. 2012;64(5):533–4. doi:10.1016/j.jinf.2012.01.008.

    Article  PubMed  Google Scholar 

  46. Ofer-Friedman H, Shefler C, Sharma S, Tirosh A, Tal-Jasper R, Kandipalli D, et al. Carbapenems versus piperacillin-tazobactam for bloodstream infections of nonurinary source caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae. Infect Control Hosp Epidemiol. 2015;36(8):981–5. doi:10.1017/ice.2015.101.

    Article  PubMed  Google Scholar 

  47. Ng TM, Khong WX, Harris PN, De PP, Chow A, Tambyah PA, et al. Empiric piperacillin-tazobactam versus carbapenems in the treatment of bacteraemia due to extended-spectrum beta-lactamase-producing Enterobacteriaceae. PLoS One. 2016;11(4):e0153696. doi:10.1371/journal.pone.0153696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Harris PN, Yin M, Jureen R, Chew J, Ali J, Paynter S, et al. Comparable outcomes for beta-lactam/beta-lactamase inhibitor combinations and carbapenems in definitive treatment of bloodstream infections caused by cefotaxime-resistant Escherichia coli or Klebsiella pneumoniae. Antimicrob Resist Infect Control. 2015;4:14. doi:10.1186/s13756-015-0055-6.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tamma PD, Han JH, Rock C, Harris AD, Lautenbach E, Hsu AJ, et al. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum beta-lactamase bacteremia. Clin Infect Dis. 2015;60(9):1319–25. doi:10.1093/cid/civ003. This single-center, retrospective study demonstrated that patients with bloodstream infections caused by ESBL-producing Enterobacteriaceae had increased mortality when treated empirically with piperacillin-tazobactam versus carbapenems.

    PubMed  PubMed Central  Google Scholar 

  50. Harris PN, Peleg AY, Iredell J, Ingram PR, Miyakis S, Stewardson AJ, et al. Meropenem versus piperacillin-tazobactam for definitive treatment of bloodstream infections due to ceftriaxone non-susceptible Escherichia coli and Klebsiella spp (the MERINO trial): study protocol for a randomised controlled trial. Trials. 2015;16:24. doi:10.1186/s13063-014-0541-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zasowski EJ, Rybak JM, Rybak MJ. The beta-lactams strike back: ceftazidime-avibactam. Pharmacotherapy. 2015;35(8):755–70. doi:10.1002/phar.1622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wagenlehner FM, Sobel JD, Newell P, Armstrong J, Huang X, Stone GG, et al. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a phase 3 randomized trial program. Clin Infect Dis. 2016. doi:10.1093/cid/ciw378.

    PubMed Central  Google Scholar 

  53. Mazuski JE, Gasink LB, Armstrong J, Broadhurst H, Stone GG, Rank D, et al. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, phase 3 program. Clin Infect Dis. 2016;62(11):1380–9. doi:10.1093/cid/ciw133.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Karlowsky JA, Biedenbach DJ, Kazmierczak KM, Stone GG, Sahm DF. Activity of ceftazidime-avibactam against extended-spectrum- and AmpC beta-lactamase-producing Enterobacteriaceae collected in the INFORM global surveillance study from 2012 to 2014. Antimicrob Agents Chemother. 2016;60(5):2849–57. doi:10.1128/AAC.02286-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carmeli Y, Armstrong J, Laud PJ, Newell P, Stone G, Wardman A, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis. 2016;16(6):661–73. doi:10.1016/S1473-3099(16)30004-4.

    Article  CAS  PubMed  Google Scholar 

  56. Wu G, Abraham T, Lee S. Ceftazidime-avibactam for treatment of carbapenem-resistant Enterobacteriaceae bacteremia. Clin Infect Dis. 2016. doi:10.1093/cid/ciw491.

    Google Scholar 

  57. Jacobs DM, DiTursi S, Ruh C, Sharma R, Claus J, Banjade R, et al. Combination treatment with extended-infusion ceftazidime/avibactam for a KPC-3-producing Klebsiella pneumoniae bacteraemia in a kidney and pancreas transplant patient. Int J Antimicrob Agents. 2016;48(2):225–7. doi:10.1016/j.ijantimicag.2016.06.002.

    Article  CAS  PubMed  Google Scholar 

  58. van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation beta-lactam/beta-lactamase inhibitor combinations. Clin Infect Dis. 2016;63(2):234–41. doi:10.1093/cid/ciw243.

    Article  PubMed  Google Scholar 

  59. Miller B, Popejoy MW, Hershberger E, Steenbergen JN, Alverdy J. Characteristics and outcomes of complicated intra-abdominal infections involving Pseudomonas aeruginosa from a randomized, double-blind, phase 3 ceftolozane-tazobactam study. Antimicrob Agents Chemother. 2016;60(7):4387–90. doi:10.1128/AAC.03074-15.

    Article  PubMed  Google Scholar 

  60. Huntington JA, Sakoulas G, Umeh O, Cloutier DJ, Steenbergen JN, Bliss C, et al. Efficacy of ceftolozane/tazobactam versus levofloxacin in the treatment of complicated urinary tract infections (cUTIs) caused by levofloxacin-resistant pathogens: results from the ASPECT-cUTI trial. J Antimicrob Chemother. 2016;71(7):2014–21. doi:10.1093/jac/dkw053.

    Article  CAS  PubMed  Google Scholar 

  61. Cho JC, Fiorenza MA, Estrada SJ. Ceftolozane/tazobactam: a novel cephalosporin/beta-lactamase inhibitor combination. Pharmacotherapy. 2015;35(7):701–15. doi:10.1002/phar.1609.

    Article  CAS  PubMed  Google Scholar 

  62. Farrell DJ, Flamm RK, Sader HS, Jones RN. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa with various resistance patterns isolated in U.S. hospitals (2011–2012). Antimicrob Agents Chemother. 2013;57(12):6305–10. doi:10.1128/AAC.01802-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zanetti G, Bally F, Greub G, Garbino J, Kinge T, Lew D, et al. Cefepime versus imipenem-cilastatin for treatment of nosocomial pneumonia in intensive care unit patients: a multicenter, evaluator-blind, prospective, randomized study. Antimicrob Agents Chemother. 2003;47(11):3442–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sader HS, Hsiung A, Fritsche TR, Jones RN. Comparative activities of cefepime and piperacillin/tazobactam tested against a global collection of Escherichia coli and Klebsiella spp. with an ESBL phenotype. Diagn Microbiol Infect Dis. 2007;57(3):341–4. doi:10.1016/j.diagmicrobio.2006.08.016.

    Article  CAS  PubMed  Google Scholar 

  65. Kang CI, Cha MK, Kim SH, Wi YM, Chung DR, Peck KR, et al. Extended-spectrum cephalosporins and the inoculum effect in tests with CTX-M-type extended-spectrum beta-lactamase-producing Escherichia coli: potential clinical implications of the revised CLSI interpretive criteria. Int J Antimicrob Agents. 2014;43(5):456–9. doi:10.1016/j.ijantimicag.2014.01.030.

    Article  CAS  PubMed  Google Scholar 

  66. Wu N, Chen BY, Tian SF, Chu YZ. The inoculum effect of antibiotics against CTX-M-extended-spectrum beta-lactamase-producing Escherichia coli. Ann Clin Microbiol Antimicrob. 2014;13:45. doi:10.1186/s12941-014-0045-1.

    PubMed  PubMed Central  Google Scholar 

  67. Chopra T, Marchaim D, Veltman J, Johnson P, Zhao JJ, Tansek R, et al. Impact of cefepime therapy on mortality among patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother. 2012;56(7):3936–42. doi:10.1128/AAC.05419-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee Y, Yum JH, Kim CK, Yong D, Jeon EH, Jeong SH, et al. Role of OXA-23 and AdeABC efflux pump for acquiring carbapenem resistance in an Acinetobacter baumannii strain carrying the blaOXA-66 gene. Ann Clin Lab Sci. 2010;40(1):43–8.

    CAS  PubMed  Google Scholar 

  69. Lee NY, Lee CC, Huang WH, Tsui KC, Hsueh PR, Ko WC. Cefepime therapy for monomicrobial bacteremia caused by cefepime-susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae: MIC matters. Clin Infect Dis. 2013;56(4):488–95. doi:10.1093/cid/cis916. In this multicenter, retrospective study, cefepime was shown to be a potentially effective option for bloodstream infections caused by ESBL-producing Enterobacteriaceae only if the MIC of the infecting organism was sufficiently low.

    Article  CAS  PubMed  Google Scholar 

  70. Bhat SV, Peleg AY, Lodise Jr TP, Shutt KA, Capitano B, Potoski BA, et al. Failure of current cefepime breakpoints to predict clinical outcomes of bacteremia caused by gram-negative organisms. Antimicrob Agents Chemother. 2007;51(12):4390–5. doi:10.1128/AAC.01487-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roos JF, Bulitta J, Lipman J, Kirkpatrick CM. Pharmacokinetic-pharmacodynamic rationale for cefepime dosing regimens in intensive care units. J Antimicrob Chemother. 2006;58(5):987–93. doi:10.1093/jac/dkl349.

    Article  CAS  PubMed  Google Scholar 

  72. Altshuler J, Aitken SL, Guervil D, Esaian D, Papadopoulos J, Arias CA. Treatment of extended-spectrum beta-lactamase enterobacteriaceae with cefepime: the dose matters, too. Clin Infect Dis. 2013;57(6):915–6. doi:10.1093/cid/cit383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee NY, Lee CC, Li CW, Hsueh PR, Ko WC. Reply to Altshuler et al. Clin Infect Dis. 2013;57(6):916–7. doi:10.1093/cid/cit387.

    Article  PubMed  Google Scholar 

  74. Rhodes NJ, Liu J, McLaughlin MM, Qi C, Scheetz MH. Evaluation of clinical outcomes in patients with Gram-negative bloodstream infections according to cefepime MIC. Diagn Microbiol Infect Dis. 2015;82(2):165–71. doi:10.1016/j.diagmicrobio.2015.03.005.

    Article  CAS  PubMed  Google Scholar 

  75. Lee NY, Lee CC, Li CW, Li MC, Chen PL, Chang CM, et al. Cefepime therapy for monomicrobial Enterobacter cloacae bacteremia: unfavorable outcomes in patients infected by cefepime-susceptible dose-dependent isolates. Antimicrob Agents Chemother. 2015;59(12):7558–63. doi:10.1128/AAC.01477-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang R, Cosgrove SE, Tschudin-Sutter S, Han JH, Turnbull AE, Hsu AJ, et al. Cefepime therapy for cefepime-susceptible extended-spectrum beta-lactamase-producing Enterobacteriaceae bacteremia. Open Forum Infect Dis. 2016;3(3):ofw132. doi:10.1093/ofid/ofw132.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Rhodes NJ, Richardson CL, Heraty R, Liu J, Malczynski M, Qi C, et al. Unacceptably high error rates in Vitek 2 testing of cefepime susceptibility in extended-spectrum-beta-lactamase-producing Escherichia coli. Antimicrob Agents Chemother. 2014;58(7):3757–61. doi:10.1128/AAC.00041-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Jang W, Park YJ, Park KG, Yu J. Evaluation of MicroScan WalkAway and Vitek 2 for determination of the susceptibility of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates to cefepime, cefotaxime and ceftazidime. J Antimicrob Chemother. 2013;68(10):2282–5. doi:10.1093/jac/dkt172.

    CAS  PubMed  Google Scholar 

  79. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22(1):161–82. doi:10.1128/CMR.00036-08. Table of Contents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Denisuik AJ, Lagace-Wiens PR, Pitout JD, Mulvey MR, Simner PJ, Tailor F, et al. Molecular epidemiology of extended-spectrum beta-lactamase-, AmpC beta-lactamase- and carbapenemase-producing Escherichia coli and Klebsiella pneumoniae isolated from Canadian hospitals over a 5 year period: CANWARD 2007–11. J Antimicrob Chemother. 2013;68 Suppl 1:i57–65. doi:10.1093/jac/dkt027.

    Article  CAS  PubMed  Google Scholar 

  81. Sheng WH, Badal RE, Hsueh PR, Program S. Distribution of extended-spectrum beta-lactamases, AmpC beta-lactamases, and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal infections in the Asia-Pacific region: results of the study for monitoring antimicrobial resistance trends (SMART). Antimicrob Agents Chemother. 2013;57(7):2981–8. doi:10.1128/AAC.00971-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Castanheira M, Farrell SE, Deshpande LM, Mendes RE, Jones RN. Prevalence of beta-lactamase-encoding genes among Enterobacteriaceae bacteremia isolates collected in 26 U.S. hospitals: report from the SENTRY antimicrobial surveillance program (2010). Antimicrob Agents Chemother. 2013;57(7):3012–20. doi:10.1128/AAC.02252-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guerin F, Isnard C, Cattoir V, Giard JC. Complex regulation pathways of AmpC-mediated beta-lactam resistance in Enterobacter cloacae complex. Antimicrob Agents Chemother. 2015;59(12):7753–61. doi:10.1128/AAC.01729-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fisher JF, Mobashery S. The sentinel role of peptidoglycan recycling in the beta-lactam resistance of the Gram-negative Enterobacteriaceae and Pseudomonas aeruginosa. Bioorg Chem. 2014;56:41–8. doi:10.1016/j.bioorg.2014.05.011.

    Article  CAS  PubMed  Google Scholar 

  85. Juan C, Macia MD, Gutierrez O, Vidal C, Perez JL, Oliver A. Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Antimicrob Agents Chemother. 2005;49(11):4733–8. doi:10.1128/AAC.49.11.4733-4738.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kang CI, Pai H, Kim SH, Kim HB, Kim EC, Oh MD, et al. Cefepime and the inoculum effect in tests with Klebsiella pneumoniae producing plasmid-mediated AmpC-type beta-lactamase. J Antimicrob Chemother. 2004;54(6):1130–3. doi:10.1093/jac/dkh462.

    Article  CAS  PubMed  Google Scholar 

  87. Limaye AP, Gautom RK, Black D, Fritsche TR. Rapid emergence of resistance to cefepime during treatment. Clin Infect Dis. 1997;25(2):339–40.

    Article  CAS  PubMed  Google Scholar 

  88. Siedner MJ, Galar A, Guzman-Suarez BB, Kubiak DW, Baghdady N, Ferraro MJ, et al. Cefepime vs other antibacterial agents for the treatment of Enterobacter species bacteremia. Clin Infect Dis. 2014;58(11):1554–63. doi:10.1093/cid/ciu182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tamma PD, Girdwood SC, Gopaul R, Tekle T, Roberts AA, Harris AD, et al. The use of cefepime for treating AmpC beta-lactamase-producing Enterobacteriaceae. Clin Infect Dis. 2013;57(6):781–8. doi:10.1093/cid/cit395. In this retrospective, single-center study, cefepime was demonstrated to be an equally effective treatment option for common AmpC producing organisms in comparison to meropenem.

    Article  CAS  PubMed  Google Scholar 

  90. Huband MD, Castanheira M, Flamm RK, Farrell DJ, Jones RN, Sader HS. In vitro activity of ceftazidime-avibactam against contemporary Pseudomonas aeruginosa isolates from U.S. medical centers by census region, 2014. Antimicrob Agents Chemother. 2016;60(4):2537–41. doi:10.1128/AAC.03056-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sader HS, Castanheira M, Farrell DJ, Flamm RK, Jones RN. Ceftazidime-avibactam activity when tested against ceftazidime-nonsusceptible Citrobacter spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa from Unites States medical centers (2011–2014). Diagn Microbiol Infect Dis. 2015;83(4):389–94. doi:10.1016/j.diagmicrobio.2015.06.008.

    Article  CAS  PubMed  Google Scholar 

  92. Sader HS, Farrell DJ, Castanheira M, Flamm RK, Jones RN. Antimicrobial activity of ceftolozane/tazobactam tested against Pseudomonas aeruginosa and Enterobacteriaceae with various resistance patterns isolated in European hospitals (2011–12). J Antimicrob Chemother. 2014;69(10):2713–22. doi:10.1093/jac/dku184.

    Article  CAS  PubMed  Google Scholar 

  93. Sader HS, Rhomberg PR, Farrell DJ, Jones RN. Antimicrobial activity of CXA-101, a novel cephalosporin tested in combination with tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis strains having various resistance phenotypes. Antimicrob Agents Chemother. 2011;55(5):2390–4. doi:10.1128/AAC.01737-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bulik CC, Tessier PR, Keel RA, Sutherland CA, Nicolau DP. In vivo comparison of CXA-101 (FR264205) with and without tazobactam versus piperacillin-tazobactam using human simulated exposures against phenotypically diverse gram-negative organisms. Antimicrob Agents Chemother. 2012;56(1):544–9. doi:10.1128/AAC.01752-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Buehrle DJ, Shields RK, Chen L, Hao B, Press EG, Alkrouk A, et al. Evaluation of the in vitro activity of ceftazidime-avibactam and ceftolozane-tazobactam against meropenem-resistant Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother. 2016;60(5):3227–31. doi:10.1128/AAC.02969-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aitken SL, Kontoyiannis DP, DePombo AM, Bhatti MM, Tverdek FP, Gettys SC, et al. Use of ceftolozane/tazobactam in the treatment of multidrug-resistant Pseudomonas aeruginosa bloodstream infection in a pediatric leukemia patient. Pediatr Infect Dis J. 2016;35(9):1040–2. doi:10.1097/INF.0000000000001228.

    Article  PubMed  Google Scholar 

  97. Vickery S, McClain D, Wargo KA. Successful use of ceftolozane-tazobactam to treat a pulmonary exacerbation of cystic fibrosis caused by multidrug-resistant Pseudomonas aeruginosa. Pharmacotherapy. 2016. doi:10.1002/phar.1825.

    PubMed  Google Scholar 

  98. Kuti JL, Ghazi IM, Quintiliani Jr R, Shore E, Nicolau DP. Treatment of multidrug-resistant Pseudomonas aeruginosa with ceftolozane/tazobactam in a critically ill patient receiving continuous venovenous haemodiafiltration. Int J Antimicrob Agents. 2016. doi:10.1016/j.ijantimicag.2016.06.005.

    Google Scholar 

  99. Bremmer DN, Nicolau DP, Burcham P, Chunduri A, Shidham G, Bauer KA. Ceftolozane/tazobactam pharmacokinetics in a critically ill adult receiving continuous renal replacement therapy. Pharmacotherapy. 2016;36(5):e30–3. doi:10.1002/phar.1744.

    Article  CAS  PubMed  Google Scholar 

  100. Patel UC, Nicolau DP, Sabzwari RK. Successful treatment of multi-drug resistant Pseudomonas aeruginosa bacteremia with the recommended renally adjusted ceftolozane/tazobactam regimen. Infect Dis Ther. 2016;5(1):73–9. doi:10.1007/s40121-016-0104-3.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Oliver WD, Heil EL, Gonzales JP, Mehrotra S, Robinett K, Saleeb P, et al. Ceftolozane-tazobactam pharmacokinetics in a critically ill patient on continuous venovenous hemofiltration. Antimicrob Agents Chemother. 2016;60(3):1899–901. doi:10.1128/AAC.02608-15.

    Article  CAS  PubMed Central  Google Scholar 

  102. Gelfand MS, Cleveland KO. Ceftolozane/tazobactam therapy of respiratory infections due to multidrug-resistant Pseudomonas aeruginosa. Clin Infect Dis. 2015;61(5):853–5. doi:10.1093/cid/civ411.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel L. Aitken.

Ethics declarations

Conflict of Interest

Drs Arizpe, Reveles, Patel declare no conflicts of interests.

Dr. Aitken declares that he serves on the advisory board of Allergan and has been contracted as a member of speakers bureau.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Antimicrobial Development and Drug Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arizpe, A., Reveles, K.R., Patel, S.D. et al. Updates in the Management of Cephalosporin-Resistant Gram-Negative Bacteria. Curr Infect Dis Rep 18, 39 (2016). https://doi.org/10.1007/s11908-016-0552-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11908-016-0552-7

Keywords

Navigation